
Adventures
with the

Linux Command Line

First Internet Edition

William Shotts

A LinuxCommand.org Book



Copyright ©2014-2021, William Shotts

This work is licensed under the Creative Commons Attribution-Noncommercial-No 
Derivative Works 3.0 United States License. To view a copy of this license, visit the link 
above or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042.

Linux® is the registered trademark of Linus Torvalds.  All other trademarks belong to 
their respective owners.

This book is part of the LinuxCommand.org project, a site for Linux education and 
advocacy devoted to helping users of legacy operating systems migrate into the future.  
You may visit the LinuxCommand.org project at http  s  ://linuxcommand.org  .

Release History

Version Date Description

21.10 October 1, 2021 First Internet Edition.

http://linuxcommand.org/
http://linuxcommand.org/
http://linuxcommand.org/


Table of Contents

“Amaze your friends! Baffle your enemies!”...........................................v
What this book is about...................................................................................................v
Who should read this book.............................................................................................vi
What’s in the first Internet edition.................................................................................vi
How to read this book....................................................................................................vi
Acknowledgments.........................................................................................................vii

1 Midnight Commander.............................................................................1
Features...........................................................................................................................1
Availability......................................................................................................................1
Invocation........................................................................................................................1
Screen Layout..................................................................................................................2
Using the Keyboard and Mouse......................................................................................3
Navigation and Browsing................................................................................................3
Viewing and Editing Files...............................................................................................6
Tagging Files...................................................................................................................9
We Need a Playground..................................................................................................10
Power Features..............................................................................................................18
The User Menu..............................................................................................................23
Summing Up.................................................................................................................27
Further Reading.............................................................................................................27

2 Terminal Multiplexers............................................................................29
Some Historical Context...............................................................................................29
GNU Screen..................................................................................................................29
tmux...............................................................................................................................36
byobu.............................................................................................................................42
Summing Up.................................................................................................................46
Further Reading.............................................................................................................46

3 Less Typing............................................................................................49
Aliases and Shell Functions..........................................................................................49
Command Line Editing.................................................................................................50
Completion....................................................................................................................53
Programmable Completion...........................................................................................54
Summing Up.................................................................................................................55
Further Reading.............................................................................................................56

4 More Redirection...................................................................................57
What’s Really Going On...............................................................................................57
Duplicating File Descriptors.........................................................................................58
exec...............................................................................................................................58

i



/dev/tty...........................................................................................................................60
Noclobber......................................................................................................................60
Summing Up.................................................................................................................61
Further Reading.............................................................................................................61

5 tput..........................................................................................................63
Availability....................................................................................................................63
What it Does/How it Works..........................................................................................63
Reading Terminal Attributes.........................................................................................65
Controlling the Cursor...................................................................................................66
Text Effects...................................................................................................................67
Clearing the Screen.......................................................................................................70
Making Time.................................................................................................................72
Summing Up.................................................................................................................75
Further Reading.............................................................................................................75

6 dialog......................................................................................................77
Features.........................................................................................................................77
Availability....................................................................................................................80
How it Works.................................................................................................................81
Before and After............................................................................................................85
Limitations....................................................................................................................89
Summing Up.................................................................................................................89
Further Reading.............................................................................................................89

7 AWK........................................................................................................91
History...........................................................................................................................91
Availability....................................................................................................................91
So, What’s it Good For?................................................................................................91
How it Works.................................................................................................................92
Invocation......................................................................................................................94
The Language................................................................................................................94
Summing Up...............................................................................................................113
Further Reading...........................................................................................................113

8 Power Terminals..................................................................................115
A Typical Modern Terminal........................................................................................115
Past Favorites..............................................................................................................117
Modern Power Terminals............................................................................................121
Terminals for Other Platforms.....................................................................................135
Summing Up...............................................................................................................139
Further Reading...........................................................................................................140

9 Other Shells.........................................................................................143
The Evolution of Shells...............................................................................................143
Modern Implementations............................................................................................144

ii



Changing to Another Shell..........................................................................................152
Summing Up...............................................................................................................153
Further Reading...........................................................................................................153

10 Vim, with Vigor...................................................................................155
Let’s Get Started..........................................................................................................155
Getting Help................................................................................................................156
Starting a Script...........................................................................................................158
Using the Shell............................................................................................................159
Buffers.........................................................................................................................160
Tabs.............................................................................................................................160
Color Schemes............................................................................................................162
Marks and File Marks.................................................................................................163
Visual Mode................................................................................................................164
Indentation...................................................................................................................164
Power Moves...............................................................................................................167
Text Formatting...........................................................................................................169
Macros.........................................................................................................................172
Registers......................................................................................................................173
Insert Sub-Modes........................................................................................................174
Mapping......................................................................................................................175
Snippets.......................................................................................................................176
Finishing Our Script....................................................................................................177
Using External Commands.........................................................................................178
File System Management and Navigation..................................................................180
One Does Not Live by Code Alone.............................................................................182
More .vimrc Tricks......................................................................................................184
Summing Up...............................................................................................................185
Further Reading...........................................................................................................186

11 source.................................................................................................187
Configuration Files......................................................................................................187
Function Libraries.......................................................................................................188
Let’s Not Forget .bashrc..............................................................................................190
Security Considerations and Other Subtleties.............................................................193
Summing Up...............................................................................................................194
Further Reading...........................................................................................................194

12 Coding Standards Part 1: Our Own.................................................195
A Coding Standard of Our Own..................................................................................196
Summing Up...............................................................................................................208
Further Reading...........................................................................................................208

13 Coding Standards Part 2: new_script.............................................211
Installing new_script...................................................................................................211
Options and Arguments...............................................................................................211

iii



Creating Our First Template........................................................................................212
Looking at the Template..............................................................................................214
Summing Up...............................................................................................................217
Further Reading...........................................................................................................218

14 SQL.....................................................................................................219
A Little Theory: Tables, Schemas, and Keys..............................................................219
Database Engines/Servers...........................................................................................221
sqlite3..........................................................................................................................221
Creating a Table and Inserting Our Data.....................................................................222
Creating and Deleting Tables......................................................................................224
Data Types...................................................................................................................224
Inserting Data..............................................................................................................225
Doing Some Queries...................................................................................................225
Controlling the Output................................................................................................226
Sorting Output.............................................................................................................228
Subqueries...................................................................................................................229
Updating Tables...........................................................................................................232
Deleting Rows.............................................................................................................234
Adding and Deleting Columns....................................................................................235
Joins.............................................................................................................................237
Views...........................................................................................................................238
Indexes........................................................................................................................238
Triggers and Stored Procedures..................................................................................240
Performing Backups....................................................................................................242
Generating Your Own Datasets...................................................................................242
Summing Up...............................................................................................................245
Further Reading...........................................................................................................245

Index........................................................................................................247

iv



“Amaze your friends! Baffle your enemies!”
And the story continues.

A long time ago (shortly after I finished college in 1977) I got my first computer, a TRS-
80 model 1. In the early days of personal computing, many computer peripherals, such as 
printers and floppy disk drives, were very costly and as a result, my dad (an electrical 
engineer) and I would cruise electronic surplus stores looking for deals on devices we 
could attach to our new computer.

One day, as we were searching a large warehouse near the University of Maryland, I 
came across a store display featuring a small, clear, plastic box containing a battery, a few
computer chips, and several randomly blinking LEDs. While the little device served no 
useful purpose, it did have blinking lights. Above it hung a handwritten sign that read 
simply:

Amaze Your Friends! Baffle Your Enemies!

The excitement pervasive in the early days of personal computing is hard to explain to 
people today. The computers of that period seem so laughably primitive by today’s 
standards but it was a revolution nonetheless and there were many explorers mapping the 
new, uncharted territory of personal empowerment and technical innovation.

People entering the computer field now are at a disadvantage compared to those of us 
who came up in the 1970s and 1980s. The early computers were very simple, slow, and 
had tiny memories. All the attributes you need if you really want to understand how 
computers work. Today, computers are so fast, and software so large and complex that 
you can’t see the computer underneath anymore and that’s a shame. You can’t see the 
beauty of what they do.

However, we are now in the midst of another revolution, extremely low-cost computing. 
Devices like the Raspberry Pi single board computer offer the opportunity to work on 
systems more simple and basic compared to contemporary desktop and mobile devices. 
But make no mistake, these low-cost computers are powerful. In fact, a $35 Raspberry Pi 
compares favorably to the $30,000 Unix workstations I used in the early 1990s.

What this book is about
This volume is a sequel/supplement to my first book, The Linux Command Line (TLCL) 
and as such, we will be referring back to the first book frequently, so if you don’t already 
have a copy, please download one from LinuxCommand.org or, if you prefer, pickup a 
printed copy from your favorite bookseller or library. This time around we are going to 

v



build on our experience with the command line and add some more tools and techniques 
to our repertoire. Like the first book, this second volume is not a book about Linux 
system administration, rather it is a collection of topics that I consider both fun and 
interesting. We will cover many tools that will be of interest to budding system 
administrators, but the tools were chosen for other reasons. Sometimes they were chosen 
because they are “classic” Unix, others because they are just “something you should 
know,” but mostly topics were chosen because I find them fun and interesting. Personal 
computing, after all, should be about doing things that are fun and interesting just as it 
was in the early days.

Who should read this book
This is a book for explorers and creators looking for adventure. I think computers are the 
coolest things ever and if you share that feeling of excitement with every new thing you 
can get your computer to do then you have come to the right place. Many people today 
come into the computer field only in hopes of developing enough skill to get a job. There 
is nothing wrong with that of course. Everyone needs to earn a decent living, but there is 
more to life than that. There is beauty and there is love, and if you are wise (and lucky) 
you will find these things in your career. Computers are powerful tools that, in the right 
hands, can improve the human condition. I think it’s a worthy goal to leave the world a 
little better than the way you found it. I hope you do too.

What’s in the first Internet edition
For the most part, you can think of this book as an expansion of Part 3 of TLCL. In fact, I
considered some of these topics for inclusion in the first book, but ran out of space for 
them. That being said, this is definitely a work-in-progress. Future editions will contain 
more chapters and the existing chapters will contain additional content and the chapters 
will likely appear in a different order. Typography and layout will improve too.

How to read this book
This book is not as linear as TLCL so feel free to skip around. Some adventures are 
prerequisites for later ones. If an adventure requires an earlier one, it will be indicated. A 
few of the adventures call for supplemental material (typically code samples and datasets)
that can be downloaded from LinuxCommand.org.

vi



Acknowledgments
I would once again like to thank my ever-faithful editor Karen Shotts for her nitpicking 
my text. Also a big shout out to my many readers who made my first book such a success.
If you find a typo or a bug in my code please drop me a note at 
bshotts@users.sourceforge.net for possible correction in a future edition. Thanks. 

And as always, use your powers only for good. Let the adventures begin!

vii

mailto:bshotts@users.sourceforge.net




1 Midnight Commander
At the beginning of Chapter 4 in TLCL there is a discussion of GUI-based file managers 
versus the traditional command line tools for file manipulation such as cp, mv, and rm. 
While many common file manipulations are easily done with a graphical file manager, 
the command line tools provide additional power and flexibility.

In this adventure we will look at Midnight Commander, a character-based directory 
browser and file manager that bridges the two worlds of the familiar graphical file 
manager and the common command line tools.

The design of Midnight Commander is based on a common concept in file managers: 
dual directory panes where the listings of two directories are shown at the same time. The
idea is that files are moved or copied from the directory shown in one pane to the 
directory shown in the other. Midnight Commander can do this, and much, much more.

Features
Midnight Commander is quite powerful and boasts an extensive set of features:

• Performs all the common file and directory manipulations such as copying, 
moving, renaming, linking, and deleting.

• Allows manipulation of file and directory permissions.

• Can treat remote systems (via FTP or SSH) as though they were local directories.

• Can treat archive files (like .tar and .zip) as though they were local directories.

• Allows creation of a user-defined “hotlist” of frequently used directories.

• Can search for files based on file name or file contents, and treat the search results 
like a directory.

Availability
Midnight Commander is part of the GNU project. It is installed by default in some Linux 
distributions, and is almost always available in every distribution’s software repositories 
as the package “mc”.

Invocation
To start Midnight Commander, enter the command mc followed optionally by either 1 or 
2 directories to browse at start up.

Midnight Commander  1

http://www.midnight-commander.org/


Screen Layout

Midnight Commander screen layout

1. Left and Right Directory Panels

The center portion of the screen is dominated by two large directory panels. One of 
the two panels (called the current panel) is active at any one time. To change which
panel is the current panel, press the Tab key.

2. Function Key Labels

The bottom line on the display contains function key (F1-F10) shortcuts to the most
commonly used functions.

3. Menu Bar

The top line of the display contains a set of pull-down menus. These can be 
activated by pressing the F9 key.

4. Command Line

Just above the function key labels there is a shell prompt. Commands can be 
entered in the usual manner. One especially useful command is cd followed by a 
directory pathname. This will change the directory shown in the current directory 
panel.

5. Mini-Status Line

At the very bottom of the directory panel and above the command line is the mini-
status line. This area is used to display supplemental information about the 
currently selected item such as the targets of symbolic links.

2  Midnight Commander



Using the Keyboard and Mouse
Being a character-based application with a lot of features means Midnight Commander 
has a lot of keyboard commands, some of which it shares with other applications; others 
are unique. This makes Midnight Commander a bit challenging to learn. Fortunately, 
Midnight Commander also supports mouse input on most terminal emulators (and on the 
console if the gpm package is installed), so it’s easy to pick up the basics. Learning the 
keyboard commands is needed to take full advantage of the program’s features, however.

Another issue when using the keyboard with Midnight Commander is interference from 
the window manager and the terminal emulator itself. Many of the function keys and Alt-
key combinations that Midnight Commander uses are intercepted for other purposes by 
the terminal and window manager.

To work around this problem, Midnight Commander allows the Esc key to function as a
Meta-key. In cases where a function key or Alt-key combination is not available due to 
interference from outside programs, use the Esc key instead. For example, to input the F1
key, press and release the Esc key followed by the “1” key (use “0” for F10). The same 
method works with troublesome Alt-key combinations. For example, to enter Alt-t, 
press and release the Esc key followed by the “t” key. To close dialog boxes in Midnight 
Commander, press the Esc key twice.

Navigation and Browsing
Before we start performing file operations, it’s important to learn how to use the directory
panels and navigate the file system.

As we can see, there are two directory panels, the left panel and the right panel. At any 
one time, one of the panels is active and is called the current panel. The other panel is 
conveniently called the other panel in the Midnight Commander documentation.

The current panel can be identified by the highlighted bar in the directory listing, which 
can be moved up and down with the arrow keys, PgUp, PgDn, etc. Any file or directory 
which is highlighted is said to be selected.

Select a directory and press Enter. The current directory panel will change to the selected
directory. Highlighting the topmost item in the listing selects the parent directory. It is 
also possible to change directories directly on the command line below the directory 
panels. To do so, simply enter cd followed by a path name as usual.

Pressing the Tab key switches the current panel.

Midnight Commander  3



Changing the Listing Format
The directory listing can be displayed in several different formats. Pressing Alt-t cycles 
through them. There is a dual column format, a format resembling the output of ls -l, 
and others.

There is also an “information mode.” This will display detailed file system information in
the other panel about the selected item in the current panel. To invoke this mode, type 
Ctrl-x i. To return the other panel to its normal state, type Ctrl-x i again.

Directory panel in information mode

Setting the Directory on the Other Panel
It is often useful to select a directory in the current panel and have its contents listed on 
the other panel; for example, when moving files from a parent directory into a 
subdirectory. To do this, select a directory and type Alt-o. To force the other panel to list 
the same directory as the current panel, type Alt-i.

The Directory Hotlist
Midnight Commander can store a list of frequently visited directories. This “hotlist” can 
displayed by pressing Ctrl-\.

4  Midnight Commander



Directory hotlist

To add a directory to the hotlist while browsing, select a directory and type Ctrl-x h.

Directory History
Each directory panel maintains a list of directories that it has displayed. To access this 
list, type Alt-H. From the list, a directory can be selected for browsing. Even without the 
history list display, we can traverse the history list forward and backward by using the 
Alt-u and Alt-y keys respectively.

Using the Mouse
We can perform many Midnight Commander operations using the mouse. A directory 
panel item can be selected by clicking on it and a directory can be opened by double 
clicking. Likewise, the function key labels and menu bar items can be activated by 
clicking on them. What is not so apparent is that the directory history can be accessed and
traversed. At the top of each directory panel there are small arrows (circled in the image 
below). Clicking on them will show the directory history (the up arrow) and move 
forward and backward through the history list (the right and left arrows).

There is also an arrow to the extreme lower right edge of the command line which reveals
the command line history.

Midnight Commander  5



Directory and command line history mouse controls

Viewing and Editing Files
An activity often performed while directory browsing is examining the content of files. 
Midnight Commander provides a capable file viewer which can be accessed by selecting 
a file and pressing the F3 key.

File viewer

6  Midnight Commander



As we can see, when the file viewer is active, the function key labels at the bottom of the 
screen change to reveal viewer features. Files can be searched and the viewer can quickly
go to any position in the file. Most importantly, files can be viewed in either ASCII 
(regular text) or hexadecimal, for those cases when we need a really detailed view.

File viewer in hexadecimal mode

It is also possible to put the other panel into “quick view” mode to view the currently 
selected file. This is especially nice if we are browsing a directory full of text files and 
want to rapidly view the files, as each time a new file is selected in the current panel, it’s 
instantly displayed in the other. To start quick view mode, type Ctrl-x q.

Midnight Commander  7



Quick view mode

Once in quick view mode, we can press Tab and the focus changes to the other panel in 
quick view mode. This will change the function key labels to a subset of the full file 
viewer. To exit the quick view mode, press Tab to return to the directory panel and press 
Alt-i.

Editing
Since we are already viewing files, we will probably want to start editing them too. 
Midnight Commander accommodates us with the F4 key, which invokes a text editor 
loaded with the selected file. Midnight Commander can work with the editor of your 
choice. On Debian-based systems we are prompted to make a selection the first time we 
press F4. Debian suggests nano as the default selection, but various flavors of vim are 
also available along with Midnight Commander’s own built-in editor, mcedit. We can try
out mcedit on its own at the command line for a taste of this editor.

8  Midnight Commander



mcedit

Tagging Files
We have already seen how to select a file in the current directory panel by simply moving
the highlight, but operating on a single file is not of much use. After all, we can perform 
those kinds of operations more easily by entering commands directly on the command 
line. However, we often want to operate on multiple files. This can be accomplished 
through tagging. When a file is tagged, it is marked for some later operation such as 
copying. This is why we choose to use a file manager like Midnight Commander. When 
one or more files are tagged, file operations (such as copying) are performed on the 
tagged files and selection has no effect.

Tagging Individual Files
To tag an individual file or directory, select it and press the Insert key. To untag it, press
the Insert key again.

Tagging Groups of Files
To tag a group of files or directories according to a selection criteria, such as a wildcard 
pattern, press the + key. This will display a dialog where the pattern may be specified.

Midnight Commander  9



File tagging dialog

This dialog stores a history of patterns. To traverse it, use Ctrl up and down arrows.

It is also possible to un-tag a group of files. Pressing the / key will cause a pattern entry 
dialog to display.

We Need a Playground
To explore the basic file manipulation features of Midnight Commander, we need a 
“playground” like we had in Chapter 4 of TLCL.

Creating Directories
The first step in creating a playground is creating a directory called, aptly enough, 
playground. First, we will navigate to our home directory, then press the F7 key.

10  Midnight Commander



Create Directory dialog

Type “playground” into the dialog and press Enter. Next, we want the other panel to 
display the contents of the playground directory. To do this, highlight the playground 
directory and press Alt-o.

Now let’s put some files into our playground. Press Tab to switch the current panel to the 
playground directory panel. We’ll create a couple of subdirectories by repeating what we 
did to create playground. Create subdirectories dir1 and dir2. Finally, using the 
command line, we will create a few files:
me@linuxbox: ~/playground $ touch file1 file2 "ugly file"

Midnight Commander  11



The playground

Copying and Moving Files
Okay, here is where things start to get weird.

Select dir1, then press Alt-o to display dir1 in the other panel. Select the file file1 
and press F5 to copy (The F6-RenMov command is similar). We are now presented with 
this formidable-looking dialog box:

12  Midnight Commander



Copy dialog

To see Midnight Commander’s default behavior, just press Enter and file1 is copied 
into directory dir1 (i.e., the file is copied from the directory displayed in current panel to
the directory displayed in the other panel).

That was straightforward, but what if we want to copy file2 to a file in dir1 named 
file3? To do this, we select file2 and press F5 again and enter the new filename into 
the Copy dialog:

Midnight Commander  13



Renaming a file during copy

Again, this is pretty straightforward. But let’s say we tagged a group of files and wanted 
to copy and rename them as they are copied (or moved). How would we do that? 
Midnight Commander provides a way of doing it, but it’s a little strange.

The secret is the source mask in the copy dialog. At first glance, it appears that the source
mask is simply a file selection wildcard, but first appearances can be deceiving. The mask
does filter files as we would expect, but only in a limited way. Unlike the range of 
wildcards available in the shell, the wildcards in the source mask are limited to “?” (for 
matching single characters) and "*" (for matching multiple characters). What’s more, the 
wildcards have a special property.

It works like this: let’s say we had a file name with an embedded space such as “ugly 
file” and we want to copy (or move) it to dir1 as the file “uglyfile”, instead. Using the 
source mask, we could enter the mask "* *" which means break the source file name into 
two blocks of text separated by a space. This wildcard pattern will match the file ugly 
file, since its name consists of two strings of characters separated by a space. Midnight 
Commander will associate each block of text with a number starting with 1, so block 1 
will contain “ugly” and block 2 will contain “file”. Each block can be referred to by a 
number as with regular expression grouping. So to create a new file name for our target 
file without the embedded space, we would specify “\1\2” in the “to” field of the copy 
dialog like so:

14  Midnight Commander



Using grouping

The “?” wildcard behaves the same way. If we make the source mask “???? ????” (which 
again matches the file ugly file), we now have eight pieces of text that we can 
rearrange at will. For example, we could make the “to” mask “\8\7\6\5\4\3\2\1”, and the 
resulting file name would be “elifylgu”. Pretty neat.

Midnight Commander can also perform case conversion on file names. To do this, we 
include some additional escape sequences in the to mask:

• \u Converts the next character to uppercase.

• \U Converts all characters to uppercase until another sequence is encountered.

• \l Converts the next character to lowercase.

• \L Converts all characters to lowercase until another sequence is encountered.

So if we wanted to change the name ugly file to camel case, we could use the mask “\
u\L\1\u\L\2” and we would get the name UglyFile.

Creating Links
Midnight Commander can create both hard and symbolic links. They are created using 
these 3 keyboard commands which cause a dialog to appear where the details of the link 
can be specified:

• Ctrl-x l creates a hard link, in the directory shown in the current panel.

Midnight Commander  15



• Ctrl-x s creates a symbolic link in the directory shown in the other panel, using 
an absolute directory path.

• Ctrl-x v creates a symbolic link in the directory shown in the other panel, using a 
relative directory path.

The two symbolic link commands are basically the same. They differ only in the fact that 
the paths suggested in the Symbolic Link dialog are absolute or relative.

We’ll demonstrate creating a symbolic link by creating a link to file1. To do this, we 
select file1 in the current panel and type Ctrl-x s. The Symbolic Link dialog appears 
and we can either enter a name for the link or we can accept the program’s suggestion. 
For the sake of clarity, we will change the name to file1-sym.

Symbolic link dialog

Setting File Modes and Ownership
File modes (i.e., permissions) can be set on the selected or tagged files by typing Ctrl-x 
c. Doing so will display a dialog box in which each attribute can be turned on or off. If 
Midnight Commander is being run with superuser privileges, file ownership can be 
changed by typing Ctrl-x o. A dialog will be displayed where the owner and group 
owner of selected/tagged files can be set.

16  Midnight Commander



Chmod dialog

To demonstrate changing file modes, we will make file1 executable. First, we will 
select file1 and then type Ctrl-x c. The Chmod command dialog will appear, listing 
the file’s mode settings. By using the arrow keys we can select the check box labeled 
“execute/search by owner” and toggle its setting by using the space bar.

Deleting Files
Pressing the F8 key deletes the selected or tagged files and directories. By default, 
Midnight Commander always prompts the user for confirmation before deletion is 
performed.

We’re done with our playground for now, so it’s time to clean up. We will enter cd at the 
shell prompt to get the current panel to list our home directory. Next, we will select 
playground and press F8 to delete the playground directory.

Midnight Commander  17



Delete confirmation dialog

Power Features
Beyond basic file manipulation, Midnight Commander offers a number of additional 
features, some of which are very interesting.

Virtual File Systems
Midnight Commander can treat some types of archive files and remote hosts as though 
they are local file systems. Using the cd command at the shell prompt, we can access 
these.

For example, we can look at the contents of tar files. To try this out, let’s create a 
compressed tar file containing the files in the /etc directory. We can do this by entering 
this command at the shell prompt:
me@linuxbox ~ $ tar czf etc.tgz /etc

Once this command completes (there will be some “permission denied” errors but these 
don’t matter for our purposes), the file etc.tgz will appear among the files in the current
panel. If we select this file and press Enter, the contents of the archive will be displayed 
in the current panel. Notice that the shell prompt does not change as it does with ordinary 
directories. This is because while the current panel is displaying a list of files like before, 
Midnight Commander cannot treat the virtual file system in the same way as a real one. 
For example, we cannot delete files from the tar archive, but we can copy files from the 
archive to the real file system.

18  Midnight Commander



Virtual file systems can also treat remote file systems as local directories. In most 
versions of Midnight Commander, both FTP and FISH (FIles transferred over SHell) 
protocols are supported and, in some versions, SMB/CIFS as well.

As an example, let’s look at the software library FTP site at Georgia Tech, a popular 
repository for Linux software. Its name is ftp.gtlib.gatech.edu. To connect with /pub 
directory on this site and browse its files, we enter this cd command:

me@linuxbox ~ $ cd ftp://ftp.gtlib.gatech.edu/pub

Since we don’t have write permission on this site, we cannot modify any any files there, 
but we can copy files from the remote server to our local file system.

The FISH protocol is similar. This protocol can be used to communicate with any Unix-
like system that runs a secure shell (SSH) server. If we have write permissions on the 
remote server, we can operate on the remote system’s files as if they were local. This is 
extremely handy for performing remote administration. The cd command for FISH 
protocol looks like this:
me@linuxbox ~ $ cd sh://user@remotehost/dir

Finding Files
Midnight Commander has a useful file search feature. When invoked by pressing Alt-?, 
the following dialog will appear:

Find dialog

Midnight Commander  19



On this dialog we can specify: where the search is to begin, a colon-separated list of 
directories we would like to skip during our search, any restriction on the names of the 
files to be searched, and the content of the files themselves. This feature is well-suited to 
searching large trees of source code or configuration files for specific patterns of text. For
example, let’s look for every file in /etc that contains the string “bashrc”. To do this, we 
would fill in the dialog as follows:

Search for files containing “bashrc”

Once the search is completed, we will see a list of files which we can view and/or edit.

20  Midnight Commander



Search results

Panelizing
There is a button at the bottom of the search results dialog labeled “Panelize.” If we click 
it, the search results become the contents of the current panel. From here, we can act on 
the files just as we can with any others.

In fact, we can create a panelized list from any command line program that produces a 
list of path names. For example, the find program. To do this, we use Midnight 
Commander’s “External Panelize” feature. Type Ctrl-x ! and the External Panelize 
dialog appears:

Midnight Commander  21



External panelize dialog

On this dialog we see a predefined list of panelized commands. Midnight Commander 
allows us to store commands for repeated use. Let’s try it by creating a panelized 
command that searches the system for every file whose name has the extension .JPG 
starting from the current panel directory. Select “Other command” from the list and type 
the following command into the “Command” field:
find . -type f -name "*.JPG"

After typing the command we can either press Enter to execute the command or, for 
extra fun, we can click the “Add new” button and assign our command a name and save it
for future use.

Subshells
We may, at any time, move from the Midnight Commander to a full shell session and 
back again by pressing Ctrl-o. The subshell is a copy of our normal shell, so whatever 
environment our usual shell establishes (aliases, shell functions, prompt strings, etc.) will 
be present in the sub-shell as well. If we start a long-running command in the sub-shell 
and press Ctrl-o, the command is suspended until we return to the sub-shell. Note that 
once a command is suspended, Midnight Commander cannot execute any further external
commands until the suspended command terminates.

22  Midnight Commander



The User Menu
So far we have avoided discussion of the mysterious F2 command. This is the user menu, 
which may be Midnight Commander’s most powerful and useful feature. The user menu 
is, as the name suggests, a menu of user-defined commands.

When we press the F2 key, Midnight Commander looks for a file named .mc.menu in the 
current directory. If the file does not exist, Midnight Commander looks for 
~/.config/mc/menu. If that file does not exist, then Midnight Commander falls back to a
system-wide menu file named /usr/share/mc/mc.menu.

The neat thing about this scheme is that each directory can have its own set of user menu 
commands, so that we can create commands appropriate to the contents of the current 
directory. For example, if we have a “Pictures” directory, we can create commands for 
processing images; if we have a directory full of HTML files, we can create commands 
for managing a web site, and so on.

So, after we press F2 the first time, we are presented with the default user menu that 
looks something like this:

The User Menu

Editing the User Menu
The default user menu contains several example entries. These are by no means set in 
stone. We are encouraged to edit the menu and create our own entries. The menu file is 
ordinary text and it can be edited with any text editor, but Midnight Commander provides

Midnight Commander  23



a menu editing feature found in the “Command” pulldown menu. The entry is called 
“Edit menu file.”

If we select this entry, Midnight Commander offers us a choice of “Local” and “User.” 
The Local entry allows us to edit the .mc.menu file in the current directory while 
selecting User will cause us to edit the ~/.config/mc/menu file. Note that if we select 
Local and the current directory does not contain a menu file, Midnight Commander will 
copy the default menu file into current directory as a starting point for our editing.

Menu File Format
Some parts of the user menu file format are pretty simple; other parts, not so much. We’ll 
start with the simple parts first.

A menu file consists of one or more entries. Each entry contains:

• A single character (usually a letter) that will act as a hot key for the entry when the 
menu is displayed.

• Following the hot key, on the same line, is the description of the menu entry as it 
will appear on the menu.

• On the following lines are one or more commands to be performed when the menu 
entry is selected. These are ordinary shell commands. Any number of commands 
may be specified, so quite sophisticated operations are possible. Each command 
must be indented by at least one space or tab.

• A blank line to separate one menu entry from the next.

• Comments may appear on their own lines. Each comment line starts with a # 
character.

Here is an example user menu entry that creates an HTML template in the current 
directory:
# Create a new HTML file

H   Create a new HTML file
    { echo "<html>"
    echo "\t<head>\n\t</head>"
    echo "\t<body>\n\t</body>"
    echo "</html>"; }  > new_page.html

Notice the absence of the -e option on the echo commands used in this example. 
Normally, the -e option is required to interpret the backslash escape sequences like \t 
and \n. The reason they are omitted here is that Midnight Commander does not use bash 
as the shell when it executes user menu commands. It uses sh instead. Different 
distributions use different shell programs to emulate sh . For example, Red Hat-based 
distributions use bash but Debian-based distributions like Ubuntu and Raspberry Pi OS 

24  Midnight Commander



use dash instead. dash is a compact shell program that is sh compatible but lacks many 
of the features found in bash. The dash man page describes the features of that shell.

This command will reveal which program is actually providing the sh emulation (i.e., is 
symbolically linked to sh):

me@linuxbox ~ $ ls -l /bin/sh

Macros
With that bit of silliness out of the way, let’s look at how we can get a user menu entry to 
act on currently selected or tagged files. First, it helps to understand a little about how 
Midnight Commander executes user menu commands. It’s done by writing the commands
to a file (essentially a shell script) and then launching sh to execute the contents of the 
file. During the process of writing the file, Midnight Commander performs macro 
substitution, replacing embedded symbols in the menu entry with alternate values. These 
macros are single alphabetic characters preceded by a percent sign. When Midnight 
Commander encounters one of these macros, it substitutes the value the macro represents.
Here are the most commonly used macros:

Macro Meaning
%f Selected file’s name
%x Selected file’s extension
%b Selected file’s name stripped of extension (basename)
%d Name of the current directory
%t The list of tagged files
%s If files are tagged, they are used, else the selected file is used.

List of common macros

Let’s say we wanted to create a user menu entry that would resize a JPEG image using 
the ever-handy convert program from the ImageMagick suite. Using macros, we could 
write a menu entry like this, which would act on the currently selected file:
#   Resize an image using convert

R   Resize image to fit within 800 pixel bounding square
    size=800
    convert "%f" -resize ${size}x${size} "%b-${size}.%x"

Using the %b and %x macros, we are able to construct a new output file name for the 
resized image. There is still one potential problem with this menu entry. It’s possible to 
run the menu entry command on a directory, or a non-image file (Doing so would not be 
good).

We could include some extra code to ensure that %f is actually the name of an image file, 
but Midnight Commander also provides a method for only displaying menu entries 
appropriate to the currently selected (or tagged) file(s).

Midnight Commander  25



Conditionals
Midnight Commander supports two types of conditionals that affect the behavior of a 
menu entry. The first, called an addition conditional determines if a menu entry is 
displayed. The second, called default conditional sets the default entry on a menu.

A conditional is added to a menu entry just before the first line. A conditional starts with 
either a + (for an addition) or a = (for a default) followed by one or more sub-conditions. 
Sub-conditions are separated by either a | (meaning or) or a & (meaning and) allowing us 
to express some complex logic. It is also possible to have a combined addition and 
default conditional by beginning the conditional with =+ or +=. Two separate 
conditionals, one addition and one default, are also permitted preceding a menu entry.

Let’s look at sub-conditions. They consist of one of the following:

Sub-condition Description
f pattern Match currently selected file
F pattern Match last selected in other panel
d pattern Match currently selected directory
D pattern Match last selected directory in other panel
t type Type of currently selected file
T type Type of last selected file in other panel
x filename File is executable
! sub-cond Negate result of sub-condition

List of sub-conditions

pattern is either a shell pattern (i.e., wildcards) or a regular expression according to the 
global setting configured in the Options/Configuration dialog. This setting can be 
overridden by adding shell_patterns=0 as the first line of the menu file. A value of 1 
forces use of shell patterns, while a value of 0 forces regular expressions instead.

type is one or more of the following:

Type Description
r regular file
d directory
n not a directory
l link
x executable file
t tagged
c character device
b block device
f FIFO (pipe)
s socket

List of file types

26  Midnight Commander



While this seems really complicated, it’s not really that bad. To change our image 
resizing entry to only appear when the currently selected file has the extension .jpg or
.JPG, we would add one line to the beginning of the entry (regular expressions are used 
in this example):
#   Resize an image using convert

+ f \.jpg$ | f \.JPG$
R   Resize image to fit within 800 pixel bounding square
    size=800
    convert "%f" -resize ${size}x${size} "%b-${size}.%x"

The conditional begins with + meaning that it’s an addition condition. It is followed by 
two sub-conditions. The | separating them signifies an “or” relationship between the two.
So, the finished conditional means “display this entry if the selected file name ends with
.jpg or the selected file name ends with .JPG.”

The default menu file contains many more examples of conditionals. It’s worth a look.

Summing Up
Even though it takes a little time to learn, Midnight Commander offers a lot of features 
and facilities that make file management easier when using the command line. This is 
particularly true when operating on a remote system where a graphical user interface may
not be available. The user menu feature is especially good for specialized file 
management tasks. With a little configuration, Midnight Commander can become a 
powerful tool in our command line arsenal.

Further Reading
• The Midnight Commander man page is extensive and discusses even more features 

than we have covered here.

• midnight-commander.org   is the official site for the project.

Midnight Commander  27

http://midnight-commander.org/




2 Terminal Multiplexers
It’s easy to take the terminal for granted. After all, modern terminal emulators like 
gnome-terminal, konsole, and the others included with Linux desktop environments are 
feature-rich applications that satisfy most of our needs. But sometimes we need more. We
need to have multiple shell sessions running in a single terminal. We need to display 
more than one application in a single terminal. We need to move a running terminal 
session from one computer to another. In short, we need a terminal multiplexer.

Terminal multiplexers are programs that can perform these amazing feats. In this 
adventure, we will look at three examples: GNU screen, tmux, and byobu.

Some Historical Context
If we were to go back in time to say, the mid-1980s, we might find ourselves staring at a 
computer terminal; a box with an 80-column wide, 24-line high display and a keyboard 
connected to a shared, central Unix computer via an RS-232 serial connection and, 
possibly, an acoustic-coupler modem and a telephone handset. On the display screen 
there might be a shell prompt not unlike the prompt we see today during a Linux terminal
session. However, unlike today, the computer terminal of the 1980s did not have multiple 
windows or tabs to display multiple applications or shell sessions. We only had one 
screen and that was it. Terminal multiplexers were originally developed to help address 
this limitation. A terminal multiplexer allows multiple sessions and applications to be 
displayed and managed on a single screen. While modern desktop environments and 
terminal emulator programs support multiple windows and tabbed terminal sessions, 
which mitigate the need of terminal multiplexers for some purposes, terminal 
multiplexers still offer some features that will greatly enhance our command-line 
experience.

GNU Screen
GNU screen goes way back. First developed in 1987, screen appears to be the first 
program of its type and it defined the basic feature set found in all subsequent terminal 
multiplexers.

Availability
As its name implies, GNU screen is part of the GNU Project. Though it is rarely installed 
by default, it is available in most distribution repositories as the package “screen”.

Invocation
We can start using GNU screen by simply entering the screen command at the shell 
prompt. Once the command is launched, we will be presented with a shell prompt.

Terminal Multiplexers  29



Multiple Windows
At this point, screen is running and has created its first window . The terminology used by
screen is a little confusing. It is best to think of it this way: screen manages a session 
consisting of one or more windows each containing a shell or other program. 
Furthermore, screen can divide a terminal display into multiple regions, each displaying 
the contents of a window.

Whew! This will start to make sense as we move forward.

In any case, we have screen running now, and it’s displaying its first window. Let’s enter 
a command in the current window:
me@linuxbox: ~ $ top

Initial screen window

So far, so good. Now, let’s create another window. To do this, we type Ctrl-a followed 
by the character “c”. Our terminal screen should clear and we should see a new shell 
prompt. So what just happened to our first window with top running in it? It’s still there, 
running in the background. We can return to the first window by typing Ctrl-a p (think 
“p” for “previous”).

Before we go any further, let’s talk about the keyboard. Controlling screen is pretty 
simple. Every command consists of Ctrl-a (called the “command prefix” or “escape 
sequence”) followed by another character. We have already seen two such commands: 
Ctrl-a c to create a new window, and Ctrl-a p to switch from the current window to 
the previous one. Typing the command Ctrl-a ? will display a list of all the commands.

30  Terminal Multiplexers



GNU screen has several commands for switching from one window to another. Like the 
“previous” command, there is a “next” command Ctrl-a n. Windows are numbered, 
starting with 0, and may be chosen directly by typing Ctrl-a followed by a numeral from
0 to 9. It is also possible list all the windows by typing Ctrl-a ". This command will 
display a list of windows, where we can choose a window.

Screen window list

As we can see, windows have names. The default name for a window is the name of the 
program the window was running at the time of its creation, hence both of our windows 
are named “bash”. Let’s change that. Since we are running top in our first window, let’s 
make its name reflect that. Switch to the first window using any of the methods we have 
discussed, and type the command Ctrl-a A and we will be prompted for a window 
name. Simple.

Okay, so we have created some windows, how do we destroy them? A window is 
destroyed whenever we terminate the program running in it. After all windows are 
destroyed, screen itself will terminate. Since both of our windows are running bash, we 
need only exit each respective shell to end our screen session. In the case of a program 
that refuses to terminate gracefully, Ctrl-a k will do the trick.

Let’s terminate the shell running top by typing q to exit top and then enter exit to 
terminate bash, thereby destroying the first window. We are now taken to the remaining 
window still running its own copy of bash. We can confirm this by typing Ctrl-a " to 
view the window list again.

Terminal Multiplexers  31



It’s possible to create windows and run programs without an underlying shell. To do this, 
we enter screen followed by the name of the program we wish to run, for example:

me@linuxbox: ~ $ screen vim ~/.bashrc

We can even do this in a screen window. Issuing a screen command in a screen window 
does not invoke a new copy of screen. It tells the existing instance of screen to carry out 
an operation like creating a new window.

Copy and Paste
Given that GNU screen was developed for systems that have neither a graphical user 
interface nor a mouse, it makes sense that screen would provide a way of copying text 
from one screen window to another. It does this by entering what is called scrollback 
mode. In this mode, screen allows the text cursor to move freely throughout the current 
window and through the contents of the scrollback buffer, which contains previous 
contents of the window.

We start scrollback mode by typing Ctrl-a [. In scrollback mode we can use the arrow 
keys and the Page Up and Page Down keys to navigate the scrollback buffer. To copy 
text, we first need to mark the beginning and end of the text we want to copy. This is 
done by moving the text cursor to the beginning of the desired text and pressing the space
bar. Next, we move the cursor to the end of the desired text (which is highlighted as we 
move the cursor) and press the space bar again to mark the end of the text to be copied. 
Marking text exits scrollback mode and copies the marked text into screen’s internal 
buffer. We can now paste the text into any screen window. To do this, we go to the 
desired window and type Ctrl-a ].

32  Terminal Multiplexers



Text marked for copying

Multiple Regions
GNU screen can also divide the terminal display into separate regions, each providing a 
view of a screen window. This allows us to view 2 or more windows at the same time. To 
split the terminal horizontally, type the command Ctrl-a S, to split it vertically, type 
Ctrl-a |. Newly created regions are empty (i.e., they are not associated with a window).
To display a window in a region, first move the focus to the new region by typing Ctrl-a
Tab and then either create a new window, or chose an existing window to display using 
any of the window selection commands we have already discussed. Regions may be 
further subdivided to smaller regions and we can even display the same window in more 
than one region.

Terminal Multiplexers  33



Regions

Using multiple regions is very convenient when working with large terminal displays. 
For example, if we split the display into two horizontal regions, we can edit a script in 
one region and perform testing of the script in the other. Or we could read a man page in 
one region and try out a command in the other.

There are two commands for deleting regions: Ctrl-a Q removes all regions except the 
current one, and Ctrl-a X removes the current region. Note that removing a region does 
not remove its associated window. Windows continue to exist until they are destroyed.

Detaching Sessions
Perhaps the most interesting feature of screen is its ability to detach a session from the 
terminal itself. Just as it is able to display its windows on any region of the terminal, 
screen can also display its windows on any terminal or no terminal at all.

For example, we could start a screen session on one computer, say at the office, detach 
the session from the local terminal, go home and log into our office computer remotely, 
and reattach the screen session to our home computer’s terminal. During the intervening 
time, all jobs on our office computer have continued to execute.

There are a number of commands used to manage this process.

• screen -list lists the screen sessions running on a system. If there is more than 
one session running, the pid.tty.host string shown in the listing can be appended
to the -d/-D and -r/-R options below to specify a particular session.

34  Terminal Multiplexers



• screen -d -r detaches a screen session from the previous terminal and reattaches 
it to the current terminal.

• screen -D -R detaches a screen session from the previous terminal, logs the user 
off the old terminal and attaches the session to the new terminal creating a new 
session if no session existed. According to the screen documentation, this is the 
author’s favorite.

The -d/-D and -r/-R options can be used independently, but they are most often used 
together to detach and reattach an existing screen session in a single step.

We can demonstrate this process by opening two terminals. Launch screen on the first 
terminal and create a few windows. Now, go to the second terminal and enter the 
command screen -D -R. This will the cause the first terminal to vanish (the user is 
logged off) and the screen session to move to the second terminal fully intact.

Customizing Screen
Like many of the interactive GNU utilities, screen is very customizable. During 
invocation, screen reads the /etc/screenrc and ~/.screenrc files if they exist. While 
the list of customizable features is extensive (many having to do with terminal display 
control on a variety of Unix and Unix-like platforms), we will concern ourselves with key
bindings and startup session configuration since these are the most commonly used.

First, let’s look a sample .screenrc file:

# This is a comment

# Set some key bindings

bind k              # Un-bind the "k" key (set it to do nothing)
bind K kill         # Make `Ctrl-a K` destroy the current window
bind } history      # Make `Ctrl-a }` copy and paste the current
                    # command line

# Define windows 7, 8, and 9 at startup

screen -t "mdnght cmdr" 7 mc
screen -t htop 8 htop
screen -t syslog 9 tailf /var/log/syslog

As we can see, the format is pretty simple. The bind directive is followed by the key and 
the screen command it is to be bound to. A complete list of the screen commands can 
found in the screen man page. All of the screen commands we have discussed so far are 
simply key bindings like those in the example above. We can redefine them at will.

The three lines at the end of our example .screenrc file create windows at startup. The 
commands set the window title (the -t option), a window number, and a command for 
the window to contain. This way, we can set up a screen session to be automatically built 

Terminal Multiplexers  35



when we start screen which contains a complete multi-window, command-line 
environment running all of our favorite programs.

tmux
Despite its continuing popularity, GNU screen has been criticized for its code complexity 
(to the point of being called “unmaintainable”) and its resource consumption. In addition,
it is reported that screen is no longer actively developed. In response to these concerns, a 
newer program, tmux, has attracted widespread attention.

tmux is modern, friendlier, more efficient, and generally superior to screen in most ways. 
Conceptually, tmux is very similar to screen in that it also supports the concept of 
sessions, windows and regions (called panes in tmux). In fact, it even shares a few 
keyboard commands with screen.

Availability
tmux is widely available, though not as widely as screen. It’s available in most 
distribution repositories. The package name is “tmux”.

Invocation
The program is invoked with the command tmux new to create a new session. We can 
optionally add -s <session_name> to assign a name to the new session and -n 
<window_name> to assign a name to the first window. If no option to the new command is 
supplied, the new itself may be omitted; it will be assumed. Here is an example:
me@linuxbox: ~ $ tmux new -s "my session" -n "window 1"

Once the program starts, we are presented with a shell prompt and a pretty status bar at 
the bottom of the window.

36  Terminal Multiplexers



Initial tmux window

Multiple Windows
tmux uses the keyboard in a similar fashion to screen, but rather than using Ctrl-a as the
command prefix, tmux uses Ctrl-b. This is good since Ctrl-a is used when editing the 
command line in bash to move the cursor to the beginning of the line.

Here are the basic commands for creating windows and navigating them:

Command Description
Ctrl-b ? Show the list of key bindings (i.e., help)
Ctrl-b c Create a new window
Ctrl-b n Go to next window
Ctrl-b p Go to previous window
Ctrl-b 0 Go to window 0. Numbers 1-9 are similar.
Ctrl-b w Show window list. The status bar lists windows, too.
Ctrl-b , Rename the current window

tmux window commands

Multiple Panes
Like screen, tmux can divide the terminal display into sections called panes. However, 
unlike the implementation of regions in screen, panes in tmux do not merely provide 
viewports to various windows. In tmux they are complete pseudo-terminals associated 
with the window. Thus a single tmux window can contain multiple terminals.

Terminal Multiplexers  37



Command Description
Ctrl-b " Split pane horizontally
Ctrl-b % Split pane vertically
Ctrl-b arrow Move to adjoining pane
Ctrl-b Ctrl-arrow Resize pane by 1 character
Ctrl-b Alt-arrow Resize pane by 5 characters
Ctrl-b x Destroy current pane

tmux pane commands

We can demonstrate the behavior of panes by creating a session and a couple of windows.
First, we will create a session, name it, and name the initial window:
me@linuxbox: ~ $ tmux new -s PaneDemo -n Window0

Next, we will create a second window and give it a name:
me@linuxbox: ~ $ tmux neww -n Window1

We could have done this second step with Ctrl-b commands, but seeing the command-
line method prepares us for something coming up a little later.

Assuming that all has gone well, we now find ourselves in a tmux session named 
“PaneDemo” and a window named “Window1”. Now we will split the window in two 
horizontally by typing Ctrl-b ". We still have only two windows (Window0 and 
Window1), but now have two shell prompts on Window1. We can switch back and forth 
between the two panes by typing Ctrl-b followed by up arrow or down arrow.

Just for fun, let’s type Ctrl-b t and a digital clock appears in the current pane. It’s just a 
cute thing that tmux can do.

38  Terminal Multiplexers



Multiple panes

We can terminate the clock display by typing q. If we move to the first window by typing 
Ctrl-b 0, we see that the panes remain associated with Window1 and have no effect on 
Window0.

Returning to Window1, let’s adjust the size of the panes. We do this by typing Ctrl-b 
Alt-arrow to move the boundary up or down by 5 lines. Typing Ctrl-b Ctrl-arrow 
will move the boundary by 1 line.

It’s possible to break a pane out into a new window of its own. This is done by typing 
Ctrl-b !.

Ctrl-b x is used to destroy a pane. Note that, unlike screen, destroying a pane in tmux 
also destroys the pseudo-terminal running within it, along with any associated programs.

Copy Mode
Like screen, tmux has a copy mode. It is invoked by typing Ctrl-b [. In copy mode, we 
can move the cursor freely within the scrollback buffer. To mark text for copying, we first
type Ctrl-space to begin selection, then move the cursor to make our selection. Finally, 
we type Alt-w to copy the selected text.

Admittedly, this procedure is a little awkward. A little later we’ll customize tmux to make
the copy mode act more like the vim’s visual copying mode.

Terminal Multiplexers  39



Text marked for copying

As with the digital clock, we return to normal mode by typing “q”. Now we can paste our
copied text by typing Ctrl-b ].

Detaching Sessions
With tmux it’s easier to manage multiple sessions than with screen. First, we can give 
sessions descriptive names, either during creation, as we saw with our “PaneDemo” 
example above, or by renaming an existing session with Ctrl-b $. Second, it’s easy to 
switch sessions on-the-fly by typing Ctrl-b s and choosing a session from the presented
list.

While we are in a session, we can type Ctrl-b d to detach it and, in essence, put tmux 
into the background. This is useful if we want to create new a session by entering the 
tmux new command.

If we start a new terminal (or log in from a remote terminal) and wish to attach an 
existing session to it, we can issue the command tmux ls to display a list of available 
sessions. To attach a session, we enter the command tmux attach -d -t 
<session_name>. The “-d” option causes the session to be detached from its previous 
terminal. Without this option, the session will be attached to both its previous terminal 
and the new terminal. If only one session is running, a tmux attach will connect to it 
and leave any existing connections intact.

40  Terminal Multiplexers



Customizing tmux
As we would expect, tmux is extremely configurable. When tmux starts, it reads the files
/etc/tmux.conf and ~./.tmux.conf if they exist. It is also possible to start tmux with 
the -f option and specify an alternate configuration file. This way, we can have multiple 
custom configurations.

The number of configuration commands is extensive, just as it is with screen. The tmux 
man page has the full list.

As an example, here is a hypothetical configuration file that changes the command prefix 
key from Ctrl-b to Ctrl-a and creates a new session with 4 windows:

# Sample tmux.conf file

# Change the command prefix from Ctrl-b to Ctrl-a
unbind-key C-b
set-option -g prefix C-a
bind-key C-a send-prefix

#####
# Create session with 4 windows
#####

# Create session and first window
new-session -d -s MySession

# Create second window and vertically split it
new-window
split-window -d -h

# Create third window (and name it) running Midnight Commander
new-window -d -n MdnghtCmdr mc

# Create fourth window (and name it) running htop
new-window -d -n htop htop

# Give focus to the first window in the session
select-window -t 0

Since this configuration creates a new session, we should launch tmux by entering the 
command tmux attach to avoid the default behavior of automatically creating a new 
session. Otherwise, we end up with an additional and unwanted session.

Here’s a useful configuration file that remaps the keys used to create panes and changes 
copy and paste to behave more like vim.

# Change bindings for pane-splitting from " and % to | and -
unbind '"'
unbind %
bind | split-window -h
bind - split-window -v

# Enable mouse control (clickable windows, panes, resizable panes)
set -g mouse on

# Set color support to allow visual mode highlighting to work in vim

Terminal Multiplexers  41



set -g default-terminal "screen-256color"

# Make copy work like vi
# Start copy ^b-[
# Use vi movement keys (arrows, etc.)
# Select with v, V
# Yank and end copy mode with y
# Paste with ^b-]
# View all vi key bindings with ^b-: followed with list-keys -T copy-mode-vi
set-window-option -g mode-keys vi
bind-key -T copy-mode-vi 'v' send -X begin-selection
bind-key -T copy-mode-vi 'y' send -X copy-selection-and-cancel

byobu
byobu (pronounced “BEE-oh-boo”) from the Japanese word for “a folding, decorative, 
multi-panel screen” is not a terminal multiplexer per se, but rather, it is a wrapper around 
either GNU screen or tmux (the default is tmux). It aims to create a simplified user 
interface with an emphasis on presenting useful system information on the status bar.

Availability
byobu was originally developed by Canonical employee Dustin Kirkland, and as such is 
usually found in Ubuntu and other Debian-based distributions. Recent versions are more 
portable than the initial release, and it is beginning to appear in a wider range of 
distributions. It is distributed as the package “byobu”.

Invocation
byobu can be launched simply by entering the command byobu followed optionally by 
any options and commands to be passed to the backend terminal multiplexer (i.e., tmux 
or screen). For this adventure, we will confine our discussion to the tmux backend as it 
supports a larger feature set.

42  Terminal Multiplexers



Initial byobu window

Usage
Unlike screen and tmux, byobu doesn’t use a command prefix such as Ctrl-a to start a 
command. byobu relies extensively on function keys instead. This makes byobu 
somewhat easier to learn, but in exchange, it gives up some of the power and flexibility 
of the underlying terminal multiplexer. That said, byobu still provides an easy-to-use 
interface for the most useful features and it also provides a key (F12) which acts as 
command prefix for tmux commands. Below is an excerpt from the help file supplied 
with byobu when using tmux as the backend:
  F1                            * Used by X11 *
    Shift-F1                    Display this help
  F2                            Create a new window
    Shift-F2                    Create a horizontal split
    Ctrl-F2                     Create a vertical split
    Ctrl-Shift-F2               Create a new session
  F3/F4                         Move focus among windows
    Shift-F3/F4                 Move focus among splits
    Ctrl-F3/F4                  Move a split
    Ctrl-Shift-F3/F4            Move a window
    Alt-Up/Down                 Move focus among sessions
    Shift-Left/Right/Up/Down    Move focus among splits
    Ctrl-Shift-Left/Right       Move focus among windows
    Ctrl-Left/Right/Up/Down     Resize a split
  F5                            Reload profile, refresh status
    Shift-F5                    Toggle through status lines
    Ctrl-F5                     Reconnect ssh/gpg/dbus sockets
    Ctrl-Shift-F5               Change status bar's color randomly
  F6                            Detach session and then logout
    Shift-F6                    Detach session and do not logout
    Ctrl-F6                     Kill split in focus

Terminal Multiplexers  43



  F7                            Enter scrollback history
    Alt-PageUp/PageDown         Enter and move through scrollback
  F8                            Change the current window's name
    Shift-F8                    Toggle through split arrangements
    Ctrl-F8                     Restore a split-pane layout
    Ctrl-Shift-F8               Save the current split-pane layout
  F9                            Launch byobu-config window
  F10                           * Used by X11 *
  F11                           * Used by X11 *
    Alt-F11                     Expand split to a full window
    Shift-F11                   Join window into a horizontal split
    Ctrl-F11                    Join window into a vertical split
  F12                           Escape sequence
    Shift-F12                   Toggle on/off Byobu's keybindings
    Ctrl-Shift-F12              Modrian squares

As we can see, most of the commands here correspond to features we have already seen 
in tmux. There are, however, a couple of interesting additions.

First is the F9 key, which brings up a menu screen:

byobu menu

The choices are pretty self-explanatory, though the “Change escape sequence” item is 
only relevant when using screen as the backend. If we choose “Toggle status 
notifications” we get to a really useful feature in byobu; the rich and easily configured 
status bar.

44  Terminal Multiplexers



Status notifications

Here we can choose from a wide variety of system status information to be displayed. 
Very useful if we are monitoring remote servers.

The second is the Shift-F12 key, which disables byobu from interpreting the functions 
keys as commands. This is needed in cases where a text-based application (such as 
Midnight Commander) needs the function keys. Pressing Shift-F12 a second time re-
enables the function keys for byobu. Unfortunately, byobu gives no visual indication of 
the state of the function keys, making this feature rather confusing to use in actual 
practice.

Copy Mode
byobu provides an interface to the copy mode of its backend terminal multiplexer. For 
tmux, it’s slightly simplified from normal tmux, but works about the same. Here are the 
key commands:

Command Description
Alt-PgUp Enter copy mode
Space Start text selection
Enter End text selection, copy text, and exit copy mode
Alt-Insert Paste selected text

byobu copy commands

Terminal Multiplexers  45



Detaching Sessions
To detach a session and log off, press the F6 key. To detach without logging off, type 
Shift-F6. To attach, simply enter the byobu command and the previous session will be 
reattached. If more than one session is running, we are prompted to select a session. 
While we are in a session, we can type Alt-Up and Alt-Down to move from session to 
session.

Customizing byobu
The local configuration file for byobu is located in either ~/.byobu/.tmux.conf or 
~/.config/byobu/.tmux.conf, depending on the distribution. If one doesn’t work, try 
the other. The configuration details are the same as for tmux.

Summing Up
We have seen how a terminal multiplexer can enhance our command-line experience by 
providing multiple windows and sessions, as well as multiple regions on a single terminal
display. So, which one to choose? GNU screen has the benefit of being almost universally
available, but is now considered by many as obsolete. tmux is modern and well supported
by active development. byobu builds on the success of tmux with a simplified user 
interface, but if we rely on applications that need access to the keyboard function keys, 
byobu becomes quite tedious. Fortunately, many Linux distributions make all three 
available, so it’s easy to try them all and see which one satisfies the needs at hand.

Further Reading
The man pages for screen and tmux are richly detailed. Well worth reading. The man 
page for byobu is somewhat simpler.

GNU Screen
• Official site: https://www.gnu.org/software/screen/
• A helpful entry in the Arch Wiki: https://wiki.archlinux.org/index.php/GNU_Screen
• A Google search for “screenrc” yields many sample .screenrc files
• Also look for sample files in /usr/share/doc/screen/examples

tmux
• Official site: https://www.gigastudio.com.ua
• The tmux FAQ: https://github.com/tmux/tmux/wiki/FAQ
• A helpful entry in the Arch Wiki: https://wiki.archlinux.org/index.php/tmux
• A Google search for “tmux.conf” yields many sample .tmux.conf files
• Also look for sample files in /usr/share/doc/tmux/examples

46  Terminal Multiplexers

https://wiki.archlinux.org/index.php/tmux
https://github.com/tmux/tmux/wiki/FAQ
https://www.gigastudio.com.ua/
https://wiki.archlinux.org/index.php/GNU_Screen
https://www.gnu.org/software/screen/


byobu
• Official site: https://www.byobu.org
• Answers to many common questions: https://askubuntu.com/tags/byobu/hot

Terminal Multiplexers  47

https://askubuntu.com/tags/byobu/hot
https://www.byobu.org/




3 Less Typing
Since the beginning of time, Man has had an uneasy relationship with his keyboard. Sure,
keyboards make it possible to express our precise wishes to the computer, but in our fat-
fingered excitement to get stuff done, we often suffer from typos and digital fatigue.

In this adventure, we will travel down the carpal tunnel to the land of less typing. We 
covered some of this in TLCL, but here we will look a little deeper.

Aliases and Shell Functions
The first thing we can do to reduce the number of characters we type is to make full use 
of aliases and shell functions. Aliases were created for this very purpose and they are 
often a very effective solution. Shell functions perform in many ways like aliases but 
allow a full range of shell script-like capabilities such as programmatic logic, and option 
and argument processing.

Most Linux distributions provide some set of default alias definitions and it’s easy to add 
more. To see the aliases we already have, we enter the alias command without 
arguments:
me@linuxbox: ~ $ alias
alias egrep='egrep --color=auto'
alias fgrep='fgrep --color=auto'
alias grep='grep --color=auto'
alias ls='ls --color=auto    

On this example system, we see alias is used to activate color output for some 
commonly used commands. It is also common to create aliases for various forms of the 
ls command:
alias ll='ls -l'
alias la='ls -A'
alias l='ls -CF'
alias l.='ls -d .*'
alias lm='ls -l | less'

Aliases are good for lots of things, for example, here’s one that’s useful for Debian-style 
systems:
alias update='sudo apt-get update && sudo apt-get upgrade'

Aliases are easy to create. It’s usually just a matter of appending them to our .bashrc 
file. Before creating a new alias, it’s a good idea to first test the proposed name of the 
alias with the type command to check if the name is already being used by another 
program or alias.

While being easy, aliases are somewhat limited. In particular, aliases can’t handle 
complex logic or accept positional parameters. For that we need to use shell functions.

Less Typing  49



As we recall from TLCL, shell functions are miniature shell scripts that we can add to our
.bashrc file to perform anything that we may otherwise do with a shell script. Here is an 
example function that displays a quick snapshot of a system’s health:
    status() {
      { echo -e "\nuptime:"
        uptime
        echo -e "\ndisk space:"
        df -h 2> /dev/null
        echo -e "\ninodes:"
        df -i 2> /dev/null
        echo -e "\nblock devices:"
        blkid
        echo -e "\nmemory:"
        free -m
        if [[ -r /var/log/syslog ]]; then
          echo -e "\nsyslog:"
          tail /var/log/syslog
        fi
        if [[ -r /var/log/messages ]]; then
          echo -e "\nmessages:"
          tail /var/log/messages
        fi
      } | less
    }

Unlike aliases, shell functions can accept positional parameters:
    params() {
        local argc=0
        while [[ -n $1 ]]; do
            argc=$((++argc))
            echo "Argument $argc = $1"
            shift
        done
    }

Command Line Editing
Aliases and shell functions are all well and good, provided we know in advance the 
operations we wish to perform, but what about the rest of the time? Most command line 
operations we perform are on-the-fly, so other techniques are needed.

As we saw in Chapter 8 of TLCL, the bash shell includes a library called readline to 
handle keyboard input during interactive shell sessions. This includes text typed at the 
shell prompt and keyboard input using the read builtin when the -e option is specified. 
The readline library supports a large number of commands that can be used to edit what 
we type at the command line. Since readline is from the GNU project, many of the 
commands are taken from the emacs text editor.

50  Less Typing



Control Commands
Before we get to the actual editing commands, let’s look at some commands that are used
to control the editing process.

Command Description
Enter Pressing the enter key causes the current command line to be 

accepted. Note that the cursor location within the line does not matter
(i.e., it doesn’t have to be at the end). If the line is not empty, it is 
added to the command history.

Esc Meta-prefix. If the Alt key is unavailable, the Esc key can be used in 
its place. For example, if a command calls for Alt-r but another 
program intercepts that command, press and release the Esc key 
followed by the r key.

Ctrl-g Abort the current editing command.
Ctrl-_ Incrementally undo changes to the line.
Alt-r Revert all changes to the line (i.e., complete undo).
Ctrl-l Clear the screen.
Alt-num Where num is a number. Some commands accept a numeric argument.

For those commands that accept it, type this first followed by the 
command.

Editing control commands

Moving Around
Here are some commands to move the cursor around the current command line. In the 
readline documentation, the current cursor location is referred to as the point.

Command Description
Right Move forward one character.
Left Move backward one character.
Alt-f Move forward one word.
Alt-b Move backward one word.
Ctrl-a Move to the beginning of the line.
Ctrl-e Move to the end of the line.

Cursor movement commands

Using Command History
In order to save typing, we frequently reuse previously typed commands stored in the 
command history. We can move up and down the history list and the history list can be 
searched.

Command Description
Up Move to previous history list entry.
Down Move to next history list entry.

Less Typing  51



Command Description
Alt-< Move to the beginning of the history list.
Alt-> Move to the end of the history list.
Ctrl-r Perform an incremental history search starting at the current position 

and moving up the history list. After a command is typed, a prompt 
appears and with each succeeding character typed, the position within
the list moves to the next matching line. This is probably the most 
useful of the history search commands.

Ctrl-s Like Ctrl-r except the search is performed moving down the history
list.

Alt-p Perform a non-incremental search moving up the history list.
Alt-n Perform a non-incremental search moving down the history list.
Alt-Ctrl-y Insert the first argument from the previous history entry. This 

command can take a numeric argument. When a numeric argument is 
given, the nth argument from the previous history entry is inserted.

Alt-. Insert the last argument from the previous history entry. When a 
numeric argument is given, behavior is the same as Alt-Ctrl-y 
above.

History commands

Changing Text
Command Description
Ctrl-d Delete the character at the point.
Ctrl-t Transpose characters. Exchange the character at the point with the 

character preceding it.
Alt-t Transpose words. Exchange the word at the point with the word 

preceding it.
Alt-u Change the current word to uppercase.
Alt-l Change the current word to lowercase.
Alt-c Capitalize the current word.

Editing commands

Cutting and Pasting
As with vim, cutting and pasting in readline are referred to as “killing” and “yanking.” 
The clipboard is called the kill-ring and is implemented as a circular buffer. This means 
that it contains multiple entries (i.e., each kill adds a new entry). The latest entry is 
referred to as the “top” entry. It is possible to “rotate” the kill-ring to bring the previous 
entry to the top and delete the latest entry. However, this feature is rarely used.

Mostly, the kill commands are used to simply delete text rather than save it for later 
yanking.

52  Less Typing



Command Description
Alt-d Kill from the point to the end of the current word. If the point is 

located in whitespace, kill to the end of the next word.
Alt-Backspace Kill the word before the point.
Ctrl-k Kill from the point to end of line.
Ctrl-u Kill from the point to the beginning of the line.
Ctrl-y Yank the “top” entry from the kill-ring.
Alt-y Rotate the kill-ring and yank the new “top” entry.

Copy and delete commands

Editing in Action
In Chapter 4 of TLCL, we considered the danger of using a wildcard with the rm 
command. It was suggested that we first test the wildcard with the ls command to see the
result of the expansion. We then recall the command from the history and edit the line to 
replace the “ls” with “rm”. So, how do we perform this simple edit?

First, the beginner’s way: we recall the command with the up arrow, use the left arrow 
repeatedly to move the cursor to the space between the “ls” and the wildcard, backspace 
twice, then type “rm” and Enter.

That’s a lot of keystrokes.

Next, the tough-guy’s way: we recall the command with the up arrow, type Ctrl-a to 
jump to the beginning of the line, type Alt-d to kill the current word (the “ls”), type “rm”
and Enter.

That’s better.

Finally, the super-tough-guy’s way: type “rm” then Alt-. to recall the last argument (the 
wildcard) from the previous command, then Enter.

Wow.

Completion
Another trick that readline can perform is called completion. This is where readline will 
attempt to automatically complete something we type.

For example, let’s imagine that our current working directory contains a single file named
foo.txt and we want to view it with less. So we begin to type the command less 
foo.txt but instead of typing it all out, we just type less f and then press the Tab key. 
Pressing Tab tells readline to attempt completion on the file name and remainder of the 
command is completed automatically.

Less Typing  53



This will work as long as the “clue” given to readline is not ambiguous. If we had two 
files in our imaginary directory named “foo.txt” and “foo1.txt”, a successful completion 
would not take place since “less f” could refer to either file. What happens instead is 
readline makes the next best guess by completing as far as “less foo” since both possible 
answers contain those characters. To make a full completion, we need to type either less
foo. for foo.txt or less foo1 for foo1.txt.

If we have typed an ambiguous clue, we can view a list of all possible completions to get 
guidance as what to type next. In the case of our imaginary directory, pressing Tab a 
second time will display all of the file names beginning with “foo” so that we can see 
what more needs to be typed to remove the ambiguity.

Besides file name completion, readline can complete command names, environment 
variable names, user home directory names, and network host names:

Completion Description
Command names Completion on the first word of a line will complete the name of

an available command. For example, typing “lsu” followed by 
Tab will complete as lsusb.

Variables If completion is attempted on a word beginning with “$”, 
environment variable names will be used. For example, typing 
“echo $TE” will complete as echo $TERM.

User names To complete the name of a user’s home directory, precede the 
user’s name with a “~” and press ‘Tab’. For example: ls ~ro 
followed by Tab will complete to ls ~root/. It is also possible 
to force completion of a user name without the leading ~ by 
typing Alt-~. For example “who ro” followed by Alt-~ will 
complete to who root.

Host names Completion on a word starting with “@” causes host name 
completion, however this feature rarely works on modern 
systems since they tend to use DHCP rather than listing host 
names in the /etc/hosts file.

File names In all other cases, completion is attempted on file and path 
names.

Completion types

Programmable Completion
Bash includes some builtin commands that permit the completion facility to be 
programmed on a command-by-command basis. This means it’s possible to set up a 
custom completion scheme for individual commands; however, doing this is beyond the 
scope of this adventure. We will instead talk about an optional package that uses these 
builtins to greatly extend the native completion facility. Called bash-completion, this 
package is installed automatically for some distributions (for example, Ubuntu) and is 

54  Less Typing



generally available for others. To check for the package, examine the /etc/bash-
completion.d directory. If it exists, the package is installed.

The bash-completion package adds support for many command line programs, allowing 
us to perform completion on both command options and arguments. The ls command is a
good example. If we type “ls –” then the Tab key a couple of times, we will see a list of 
possible options to the command:
me@linuxbox: ~ $ ls --
--all                                      --ignore=
--almost-all                               --ignore-backups
--author                                   --indicator-style=
--block-size=                              --inode
--classify                                 --literal
--color                                    --no-group
--color=                                   --numeric-uid-gid
--context                                  --quote-name
--dereference                              --quoting-style=
--dereference-command-line                 --recursive
--dereference-command-line-symlink-to-dir  --reverse
--directory                                --show-control-chars
--dired                                    --si
--escape                                   --size
--file-type                                --sort
--format=                                  --sort=
--group-directories-first                  --tabsize=
--help                                     --time=
--hide=                                    --time-style=
--hide-control-chars                       --version
--human-readable                           --width=

An option can be completed by typing a partial option followed by Tab. For example, 
typing “ls –ver” then Tab will complete to “ls –version”.

The bash-completion system is interesting in its own right as it is implemented by a series
of shell scripts that make use of the complete and compgen bash builtins. The main body 
of the work is done by the /etc/bash_completion (or /usr/share/bash-
completion/bash_completion in newer versions) script along with additional scripts 
for individual programs in either the /etc/bash-completion.d directory or the 
/usr/share/bash-completion/completions directory. These scripts are good 
examples of advanced scripting technique and are worthy of study.

Summing Up
This adventure is a lot to take in and it might not seem all that useful at first, but as we 
continue to gain experience and practice with the command line, learning these labor-
saving tricks will save us a lot of time and effort.

Less Typing  55



Further Reading
• “The beginning of time” actually has meaning in Unix-like operating systems such 

as Linux. It’s January 1, 1970. See: https://en.wikipedia.org/wiki/Unix_time for 
details.

• Aliases and shell functions are discussed in Chapters 5 and 26, respectively, of The 
Linux Command Line: https://linuxcommand.org/tlcl.php.

• The READLINE section of the bash man page describes the many keyboard 
shortcuts available on the command line.

• The HISTORY section of the bash man page covers the command line history 
features of bash.

• The official home page of the bash-completion project: 
https://github.com/scop/bash-completion

• For those readers interested in learning how to write their own bash completion 
scripts, see this tutorial at the Linux Documentation Project: 
https://tldp.org/LDP/abs/html/tabexpansion.html.

56  Less Typing

https://tldp.org/LDP/abs/html/tabexpansion.html
https://github.com/scop/bash-completion
https://linuxcommand.org/tlcl.php
https://en.wikipedia.org/wiki/Unix_time


4 More Redirection
As we learned in Chapter 6 of TLCL, I/O redirection is one of the most useful and 
powerful features of the shell. With redirection, our commands can send and receive 
streams of data to and from files and devices, as well as allow us to connect different 
programs together into pipelines.

In this adventure, we will look at redirection in a little more depth to see how it works 
and to discover some additional features and useful redirection techniques.

What’s Really Going On
Whenever a new program is run on the system, the kernel creates a table of file 
descriptors for the program to use. File descriptors are pointers to files. By convention, 
the first 3 entries in the table (descriptors 0, 1, and 2) are used as standard input (stdin), 
standard output (stdout), and standard error (stderr). Initially, all three descriptors point to
the terminal device (which the system treats as a read/write file), so that standard input 
comes from the keyboard and standard output and standard error go to the terminal 
display.

When a program is started as a child process of another (for instance, when we run an 
executable program in the shell), the newly launched program inherits a copy of the 
parent’s file descriptor table. Redirection is the process of manipulating the file 
descriptors so that input and output can be routed from/to different files.

The shell hides the presence of file descriptors in common redirections such as:

command > file

Here we redirect standard output to a file, but the full syntax of the redirection operator 
includes an optional file descriptor. We could write the above statement this way and it 
would have exactly the same effect:

command 1> file

As a convenience, the shell assumes we want to redirect standard output if the file 
descriptor is omitted. Likewise, the following two statements are equivalent when 
referring to standard input:

command < file

command 0< file

More Redirection  57



Duplicating File Descriptors
It is sometimes desirable to write more than one output stream (for example standard 
output and standard error) to the same file. To do this, we would write something like 
this:

command > file 2>&1

We’ll add the assumed file descriptor to the first redirection to make things a little clearer:

command 1> file 2>&1

This is an example of duplication. When we read this statement, we see that file 
descriptor 1 is changed from pointing to the terminal device to instead pointing to file. 
This is followed by the second redirection that causes file descriptor 2 to be a duplicate 
(i.e., it points to the same file) of file descriptor 1. When we look at things this way, it’s 
easy to see why the order of redirections is important. For example, if we reverse the 
order:

command 2>&1 1> file

file descriptor 2 becomes a duplicate of file descriptor 1 (which points to the terminal) 
and then file descriptor 1 is set to point to file. The final result is file descriptor 1 points to
file while file descriptor 2 still points to the terminal.

exec
Before we go any farther, we need to take a brief detour and talk about a shell builtin that 
we didn’t cover in TLCL. This builtin is named exec and it does some interesting things. 
Its main purpose is to terminate the shell and launch another program in its place. This is 
often used in startup scripts that initiate system services. However, it is not common in 
scripts used for other purposes.

Usage of exec is described below:

exec [program] [redirections]

program is the name of the program that will start and take the place of the shell. 
redirections are the redirections to be used by the new program.

One feature of exec is useful for our study of redirection. If program is omitted, any 
specified redirections are performed on the current shell. For example, if we included this
near the beginning of a script:
exec 1> output.txt

from that point on, every command using standard output would send its data to 
output.txt. It should be noted that if this trick is performed by a script, it is no longer 

58  More Redirection



possible to redirect that script’s output at runtime using the command line. For example, 
if we had the following script:
#!/bin/bash

# exec-test - Test external redirection and exec

exec 1> ~/foo1.txt
echo "Boo."

# End of script

and tried to invoke it with redirection:
me@linuxbox ~ $ ./exec-test > ~/foo2.txt

the attempted redirection would have no effect. The word “Boo” would still be written to 
the file foo1.txt, not foo2.txt as specified on the command line. This is because the 
redirection performed inside the script via exec is performed after the redirection on the 
command line, and thus, takes precedence.

Another way we can use exec is to open and close additional file descriptors. While we 
most often use descriptors 0, 1, and 2, it is possible to use others. Here are examples of 
opening and closing file descriptor 3:
# Open fd 3
exec 3> some_file.txt

# Close fd 3
exec 3>&-

It’s easy to open and use file descriptors 3-9 in the shell, and it’s even possible to use file 
descriptors 10 and above, though the bash man page cautions against it.

So why would we want to use additional file descriptors? That’s a little hard to answer. In
most cases we don’t need to. We could open several descriptors in a script and use them 
to redirect output to different files, but it’s just as easy to specify (using shell variables, if 
desired) the names of the files to which we want to redirect since most commands are 
going to send their data to standard output anyway.

There is one case in which using an additional file descriptor would be helpful. It’s the 
case of a filter program that accepts standard input and sends its filtered data to standard 
output. Such programs are quite common, for example sort and grep. But what if we 
want to create a filter program that also writes stuff on the terminal display while it was 
filtering? We can’t use standard output to do it, because standard output is being used to 
output the filtered data. We could use standard error to display stuff on the screen, but 
let’s say we wanted to keep it restricted to just error messages (this is good for logging). 
Using exec, we could do something like this:

#!/bin/bash

# counter-exec - Count number of lines in a pipe

More Redirection  59



exec 3> /dev/tty # open fd 3 and point to controlling terminal

count=0
while read; do  # read line from stdin
  echo "$REPLY" # send line to stdout
  ((count++))
  printf "\b\b\b\b\b\b%06d" $count >&3
done
echo " Lines Counted" >&3

exec 3>&- # close fd 3

This program simply copies standard input to standard output, but it displays a running 
count of the number of lines that it has copied. If we invoke it this way, we can see it in 
action:
me@linuxbox ~ $ find /usr/share | ./counter-exec > ~/find_list.txt

In this pipeline example, we generate a list of files using find, and then count them 
before writing the list in a file named find_list.txt.

The script works by reading a line from the standard input and writing the REPLY variable
(which contains the line of text from read) to standard output. The printf format 
specifier contains a series of six backspaces and a formatted integer that is always six 
digits long padded with leading zeros.

/dev/tty
The mysterious part of the script above is the exec. The exec is used to open a file using 
file descriptor 3 which is set to point to /dev/tty. /dev/tty is one of several special 
files that we can access from the shell. Special files are usually not “real” files in the 
sense that they are files that exists on a physical disk. Rather, they are virtual like the files
in the /proc directory. The /dev/tty file is a device that always points to a program’s 
controlling terminal, that is, the terminal that is responsible for launching the program. If 
we run the command ps aux on our system, we will see a listing of every process. At the 
top of the listing is a column labeled “TTY” (short for “Teletype” reflecting its historical 
roots) that contains the name of the controlling terminal. Most entries in this column will 
contain “?” meaning that the process has no controlling terminal (the process was not 
launched interactively), but others will contain a name like “pts/1” which refers to the 
device /dev/pts/1. The term “pty” means pseudo-terminal, the type of terminal used by 
terminal emulators rather than actual physical terminals.

Noclobber
When the shell encounters a command with output redirection, such as:

command > file

60  More Redirection



the first thing that happens is that the output stream is started by either creating file or, if 
file already exists, truncating it to zero length. This means that if command completely 
fails or doesn’t even exist, file will end up with zero length. This can be a safety issue for 
new users who might overwrite (or truncate) a valuable file.

To avoid this, we can do one of two things. First we can use the “>>” operator instead of 
“>” so that output will be appended to the end of file rather than the beginning. Second, 
we can set the “noclobber” shell option which prevents redirection from overwriting an 
existing file. To activate this, we enter:
set -o noclobber

Once we set this option, attempts to overwrite an existing file will cause the following 
error:
bash: file: cannot overwrite existing file

The effect of the noclobber option can be overridden by using the >| redirection 
operator like so:

command >| file

To turn off the noclobber option we enter this command:
set +o noclobber

Summing Up
While this adventure may be more on the “interesting” side than the “fun” side, it does 
provide some useful insight into how redirection actually works and some of the 
interesting ways we can use it. In a later adventure, we will put this new knowledge to 
work expanding the power of our scripts.

Further Reading
• A good visual tutorial can be found at The Bash Hackers Wiki: https://wiki.bash-

hackers.org/howto/redirection_tutorial

• For a little background on file descriptors, see this Wikipedia article: 
https://en.wikipedia.org/wiki/File_descriptor

• This Linux Journal article covers using exec to manage redirection: 
https://www.linuxjournal.com/content/bash-redirections-using-exec

• The Linux Command Line covers redirection in Chapters 6 (main discussion), 25 
(here documents), 28 (here strings), and 36 (command grouping, subshells, process 
substitution, named pipes).

• The REDIRECTION section of the bash man page, of course, has all the details.

More Redirection  61

https://www.linuxjournal.com/content/bash-redirections-using-exec
https://en.wikipedia.org/wiki/File_descriptor
https://wiki.bash-hackers.org/howto/redirection_tutorial
https://wiki.bash-hackers.org/howto/redirection_tutorial




5 tput
While our command line environment is certainly powerful, it can be be somewhat 
lacking when it comes to visual appeal. Our terminals cannot create the rich environment 
of the graphical user interface, but it doesn’t mean we are doomed to always look at plain
characters on a plain background.

In this adventure, we will look at tput, a command used to manipulate our terminal. With
it, we can change the color of text, apply effects, and generally brighten things up. More 
importantly, we can use tput to improve the human factors of our scripts. For example, 
we can use color and text effects to better present information to our users.

Availability
tput is part of the ncurses package and is supplied with most Linux distributions.

What it Does/How it Works
Long ago, when computers were centralized, interactive computer users communicated 
with remote systems by using a physical terminal or a terminal emulator program running
on some other system. In their heyday, there were many kinds of terminals and they all 
used different sequences of control characters to manage their screens and keyboards.

When we start a terminal session on our Linux system, the terminal emulator sets the 
TERM environment variable with the name of a terminal type. If we examine TERM, we can
see this:
[me@linuxbox ~]$ echo $TERM
xterm

In this example, we see that our terminal type is named “xterm” suggesting that our 
terminal behaves like the classic X terminal emulator program xterm. Other common 
terminal types are “linux” for the Linux console, and “screen” used by terminal 
multiplexers such as screen and tmux. While we will encounter these 3 types most often,
there are, in fact, thousands of different terminal types. Our Linux system contains a 
database called terminfo that describes them. We can examine a typical terminfo entry 
using the infocmp command followed by a terminal type name:
[me@linuxbox ~]$ infocmp screen
#   Reconstructed via infocmp from file: /lib/terminfo/s/screen
screen|VT 100/ANSI X3.64 virtual terminal,
    am, km, mir, msgr, xenl,
    colors#8, cols#80, it#8, lines#24, ncv@, pairs#64,
    acsc=++\,\,--..00``aaffgghhiijjkkllmmnnooppqqrrssttuuvvwwxxyyzz{{||}}~~,
    bel=^G, blink=\E[5m, bold=\E[1m, cbt=\E[Z, civis=\E[?25l,
    clear=\E[H\E[J, cnorm=\E[34h\E[?25h, cr=^M,
    csr=\E[%i%p1%d;%p2%dr, cub=\E[%p1%dD, cub1=^H,
    cud=\E[%p1%dB, cud1=^J, cuf=\E[%p1%dC, cuf1=\E[C,
    cup=\E[%i%p1%d;%p2%dH, cuu=\E[%p1%dA, cuu1=\EM,

tput  63



    cvvis=\E[34l, dch=\E[%p1%dP, dch1=\E[P, dl=\E[%p1%dM,
    dl1=\E[M, ed=\E[J, el=\E[K, el1=\E[1K, enacs=\E(B\E)0,
    flash=\Eg, home=\E[H, ht=^I, hts=\EH, ich=\E[%p1%d@,
    il=\E[%p1%dL, il1=\E[L, ind=^J, is2=\E)0, kbs=\177,
    kcbt=\E[Z, kcub1=\EOD, kcud1=\EOB, kcuf1=\EOC, kcuu1=\EOA,
    kdch1=\E[3~, kend=\E[4~, kf1=\EOP, kf10=\E[21~,
    kf11=\E[23~, kf12=\E[24~, kf2=\EOQ, kf3=\EOR, kf4=\EOS,
    kf5=\E[15~, kf6=\E[17~, kf7=\E[18~, kf8=\E[19~, kf9=\E[20~,
    khome=\E[1~, kich1=\E[2~, kmous=\E[M, knp=\E[6~, kpp=\E[5~,
    nel=\EE, op=\E[39;49m, rc=\E8, rev=\E[7m, ri=\EM, rmacs=^O,
    rmcup=\E[?1049l, rmir=\E[4l, rmkx=\E[?1l\E>, rmso=\E[23m,
    rmul=\E[24m, rs2=\Ec\E[?1000l\E[?25h, sc=\E7,
    setab=\E[4%p1%dm, setaf=\E[3%p1%dm,
    sgr=\E[0%?%p6%t;1%;%?%p1%t;3%;%?%p2%t;4%;%?%p3%t;7%;%?%p4%t;5%;m%?%p9%t\
016%e\017%;,
    sgr0=\E[m\017, smacs=^N, smcup=\E[?1049h, smir=\E[4h,
    smkx=\E[?1h\E=, smso=\E[3m, smul=\E[4m, tbc=\E[3g,

The example above is the terminfo entry for the terminal type “screen”. What we see in 
the output of infocmp is a comma-separated list of terminal capability names or 
capnames. Some of the capabilities are standalone - like the first few in the list - while 
others are assigned cryptic values. Standalone terminal capabilities indicate something 
the terminal can do. For example, the capability “am” indicates the terminal has an 
automatic right margin. Terminal capabilities with assigned values contain strings, which 
are interpreted as commands by the terminal. The values starting with “\E” (which 
represents the escape character) are sequences of control codes that cause the terminal to 
perform an action such as moving the cursor to a specified location, or setting the text 
color.

The tput command can be used to test for a particular capability or to output the 
assigned value. Here are some examples:
tput longname

This outputs the full name of the current terminal type. We can specify another terminal 
type by including the -T option. Here, we will ask for the full name of the terminal type 
named “screen”:
tput -T screen longname

We can inquire values from the terminfo database, like the number of supported colors 
and the number of columns in the current terminal:
tput colors
tput cols

We can test for particular capability. For example, to see if the current terminal supports 
“bce” (background color erase - meaning that clearing or erasing text will be done using 
the currently defined background color) we type:
tput bce && echo "True"

We can send instructions to the terminal. For example, to move the cursor to the position 
20 characters to the right and 5 rows down:
tput cup 5 20

64  tput



There are many different terminal types defined in the terminfo database and there are 
many terminal capnames. The terminfo man page contains a complete list. Note, 
however, that in general practice, there are only a relative handful of capnames supported 
by all of the terminal types we are likely to encounter on Linux systems.

Reading Terminal Attributes
For the following capnames, tput outputs a value to stdout:

Capname Description
longname Full name of the terminal type
lines Number of lines in the terminal
cols Number of columns in the terminal
colors Number of colors available

Capability names

The lines and cols values are dynamic. That is, they are updated as the size of the 
terminal window changes. Here is a handy alias that creates a command to view the 
current size of our terminal window:
alias term_size=`echo "Rows=$(tput lines) Cols=$(tput cols)"'

If we define this alias and execute it, we will see the size of the current terminal 
displayed. If we then change the size of the terminal window and execute the alias a 
second time, we will see the values have been updated.

One interesting feature we can use in our scripts is the SIGWINCH signal. This signal is 
sent each time the terminal window is resized. We can include a signal handler (i.e., a 
trap) in our scripts to detect this signal and act upon it:
    #!/bin/bash
    # term_size2 - Dynamically display terminal window size

    redraw() {
        clear
        echo "Width = $(tput cols) Height = $(tput lines)"
    }

    trap redraw WINCH

    redraw
    while true; do
        :
    done

With this script, we start an empty infinite loop, but since we set a trap for the 
SIGWINCH signal, each time the terminal window is resized the trap is triggered and the 
new terminal size is displayed. To exit this script, we type Ctrl-c.

tput  65



term_size2

Controlling the Cursor
The capnames below output strings containing control codes that instruct the terminal to 
manipulate the cursor:

Capname Description
sc Save the cursor position
rc Restore the cursor position
home Move the cursor to upper left corner (0,0)
cup <row> <col> Move the cursor to position row, col
cud1 Move the cursor down 1 line
cuu1 Move the cursor up 1 line
civis Set to cursor to be invisible
cnorm Set the cursor to its normal state

Cursor control capnames

We can modify our previous script to use cursor positioning and to place the window 
dimensions in the center as the terminal is resized:
    #!/bin/bash
    # term_size3 - Dynamically display terminal window size
    #              with text centering

    redraw() {
        local str width height length
        
        width=$(tput cols)
        height=$(tput lines)
        str="Width = $width Height = $height"

66  tput



        length=${#str}
        clear
        tput cup $((height / 2)) $(((width / 2) - (length / 2)))
        echo "$str"
    }

    trap redraw WINCH

    redraw
    while true; do
        :
    done

As in the previous script, we set a trap for the SIGWINCH signal and start an infinite 
loop. The redraw function in this script is a bit more complicated, since it has to calculate 
the center of the terminal window each time its size changes.

term_size3

Text Effects
Like the capnames used for cursor manipulation, the following capnames output strings 
of control codes that affect the way our terminal displays text characters:

Capname Description
bold Start bold text
smul Start underlined text
rmul End underlined text
rev Start reverse video
blink Start blinking text
invis Start invisible text
smso Start “standout” mode

tput  67



Capname Description
rmso End “standout” mode
sgr0 Turn off all attributes
setaf <value> Set foreground color
setab <value> Set background color

Text effects capnames

Some capabilities, such as underline and standout, have capnames to turn the attribute 
both on and off while others only have a capname to turn the attribute on. In these cases, 
the sgr0 capname can be used to return the text rendering to a “normal” state. Here is a 
simple script that demonstrates the common text effects:
    #!/bin/bash

    # tput_characters - Test various character attributes

    clear

    echo "tput character test"
    echo "==================="
    echo

    tput bold;  echo "This text has the bold attribute.";     tput sgr0

    tput smul;  echo "This text is underlined (smul).";       tput rmul

    # Most terminal emulators do not support blinking text (though xterm
    # does) because blinking text is considered to be in bad taste ;-)
    tput blink; echo "This text is blinking (blink).";        tput sgr0

    tput rev;   echo "This text has the reverse attribute";   tput sgr0

    # Standout mode is reverse on many terminals, bold on others. 
    tput smso;  echo "This text is in standout mode (smso)."; tput rmso

    tput sgr0
    echo

68  tput



tput_characters

Text Color
Most terminals support 8 foreground text colors and 8 background colors (though some 
support as many as 256). Using the setaf and setab capabilities, we can set the 
foreground and background colors. The exact rendering of colors is a little hard to 
predict. Many desktop managers impose “system colors” on terminal windows, thereby 
modifying foreground and background colors from the standard. Despite this, here are 
what the colors should be:

Value Color
0 Black
1 Red
2 Green
3 Yellow
4 Blue
5 Magenta
6 Cyan
7 White
8 Not used
9 Reset to default color

Text colors

The following script uses the setaf and setab capabilities to display the available 
foreground/background color combinations:
    #!/bin/bash

tput  69



    # tput_colors - Demonstrate color combinations.

    for fg_color in {0..7}; do
        set_foreground=$(tput setaf $fg_color)
        for bg_color in {0..7}; do
            set_background=$(tput setab $bg_color)
            echo -n $set_background$set_foreground
            printf ' F:%s B:%s ' $fg_color $bg_color
        done
        echo $(tput sgr0)
    done

tput_colors

Clearing the Screen
These capnames allow us to selectively clear portions of the terminal display:

Capnam
e

Description

smcup Save screen contents
rmcup Restore screen contents
el Clear from the cursor to the end of the line
el1 Clear from the cursor to the beginning of the line
ed Clear from the cursor to the end of the screen
clear Clear the entire screen and home the cursor

Screen erasure capnames

Using some of these terminal capabilities, we can construct a script with a menu and a 
separate output area to display some system information:
    #!/bin/bash

70  tput



    # tput_menu: a menu driven system information program

    BG_BLUE="$(tput setab 4)"
    BG_BLACK="$(tput setab 0)"
    FG_GREEN="$(tput setaf 2)"
    FG_WHITE="$(tput setaf 7)"

    # Save screen
    tput smcup

    # Display menu until selection == 0
    while [[ $REPLY != 0 ]]; do
      echo -n ${BG_BLUE}${FG_WHITE}
      clear
      cat <<- _EOF_
        Please Select:

        1. Display Hostname and Uptime
        2. Display Disk Space
        3. Display Home Space Utilization
        0. Quit

    _EOF_

      read -p "Enter selection [0-3] > " selection
      
      # Clear area beneath menu
      tput cup 10 0
      echo -n ${BG_BLACK}${FG_GREEN}
      tput ed
      tput cup 11 0

      # Act on selection
      case $selection in
        1)  echo "Hostname: $HOSTNAME"
            uptime
            ;;
        2)  df -h
            ;;
        3)  if [[ $(id -u) -eq 0 ]]; then
              echo "Home Space Utilization (All Users)"
              du -sh /home/* 2> /dev/null
            else
              echo "Home Space Utilization ($USER)"
              du -s $HOME/* 2> /dev/null | sort -nr
            fi
            ;;
        0)  break
            ;;
        *)  echo "Invalid entry."
            ;;
      esac
      printf "\n\nPress any key to continue."
      read -n 1
    done

    # Restore screen
    tput rmcup
    echo "Program terminated."

tput  71



tput_menu

Making Time
For our final exercise, we will make something useful; a large character clock. To do this,
we first need to install a program called banner. The banner program accepts one or 
more words as arguments and displays them like so:
[me@linuxbox ~]$ banner "BIG TEXT"
######    ###    #####          ####### ####### #     # #######
#     #    #    #     #            #    #        #   #     #
#     #    #    #                  #    #         # #      #
######     #    #  ####            #    #####      #       #
#     #    #    #     #            #    #         # #      #
#     #    #    #     #            #    #        #   #     #
######    ###    #####             #    ####### #     #    #

This program has been around for a long time and there are several different 
implementations. On Debian-based systems (such as Ubuntu) the package is called 
“sysvbanner”, on Red Hat-based systems the package is called simply “banner”. Once we
have banner installed we can run this script to display our clock:
    #!/bin/bash

    # tclock - Display a clock in a terminal

    BG_BLUE="$(tput setab 4)"
    FG_BLACK="$(tput setaf 0)"
    FG_WHITE="$(tput setaf 7)"

    terminal_size() { # Calculate the size of the terminal
      
      terminal_cols="$(tput cols)"
      terminal_rows="$(tput lines)"

72  tput



    }

    banner_size() {

      # Because there are different versions of banner, we need to
      # calculate the size of our banner's output

      banner_cols=0
      banner_rows=0
      
      while read; do
        [[ ${#REPLY} -gt $banner_cols ]] && banner_cols=${#REPLY}
        ((++banner_rows))
      done < <(banner "12:34 PM")
    }

    display_clock() {
      
      # Since we are putting the clock in the center of the terminal,
      # we need to read each line of banner's output and place it in the
      # right spot.
      
      local row=$clock_row
      
      while read; do
        tput cup $row $clock_col
        echo -n "$REPLY"
        ((++row))
      done < <(banner "$(date +'%I:%M %p')")
    }

    # Set a trap to restore terminal on Ctrl-c (exit).
    # Reset character attributes, make cursor visible, and restore
    # previous screen contents (if possible).

    trap 'tput sgr0; tput cnorm; tput rmcup || clear; exit 0' SIGINT

    # Save screen contents and make cursor invisible
    tput smcup; tput civis

    # Calculate sizes and positions
    terminal_size
    banner_size
    clock_row=$(((terminal_rows - banner_rows) / 2))
    clock_col=$(((terminal_cols - banner_cols) / 2))
    progress_row=$((clock_row + banner_rows + 1))
    progress_col=$(((terminal_cols - 60) / 2))

    # In case the terminal cannot paint the screen with a background
    # color (tmux has this problem), create a screen-size string of 
    # spaces so we can paint the screen the hard way.

    blank_screen=
    for ((i=0; i < (terminal_cols * terminal_rows); ++i)); do
      blank_screen="${blank_screen} "
    done

    # Set the foreground and background colors and go!
    echo -n ${BG_BLUE}${FG_WHITE}
    while true; do

tput  73



      # Set the background and draw the clock
      
      if tput bce; then # Paint the screen the easy way if bce is supported
        clear
      else # Do it the hard way
        tput home
        echo -n "$blank_screen"
      fi
      tput cup $clock_row $clock_col
      display_clock
      
      # Draw a black progress bar then fill it in white
      tput cup $progress_row $progress_col
      echo -n ${FG_BLACK}
      echo -n "###########################################################"
      tput cup $progress_row $progress_col
      echo -n ${FG_WHITE}

      # Advance the progress bar every second until a minute is used up
      for ((i = $(date +%S);i < 60; ++i)); do
        echo -n "#"
        sleep 1
      done
    done

tclock script in action

Our script paints the screen blue and places the current time in the center of the terminal 
window. This script does not dynamically update the display’s position if the terminal is 
resized (that’s an enhancement left to the reader). A progress bar is displayed beneath the 
clock and it is updated every second until the next minute is reached, when the clock 
itself is updated.

One interesting feature of the script is how it deals with painting the screen. Terminals 
that support the “bce” capability erase using the current background color. So, on 

74  tput



terminals that support bce, this is easy. We simply set the background color and then clear
the screen. Terminals that do not support bce always erase to the default color (usually 
black).

To solve this problem, our this script creates a long string of spaces that will fill the 
screen. On terminal types that do not support bce (for example, screen) the background 
color is set, the cursor is moved to the home position and then the string of spaces is 
drawn to fill the screen with the desired background color.

Summing Up
Using tput, we can easily add visual enhancements to our scripts. While it’s important 
not to get carried away, lest we end up with a garish, blinking mess, adding text effects 
and color can increase the visual appeal of our work and improve the readability of 
information we present to our users.

Further Reading
• The terminfo man page contains the entire list of terminal capabilities defined 

terminfo database.

• On most systems, the /lib/terminfo and /usr/share/terminfo directories 
contain the all of the terminals supported by terminfo.

• Bash Hacker’s Wiki   has a good entry on the subject of text effects using tput. The 
page also has some interesting example scripts.

• Greg’s Wiki   contains useful information about setting text colors using tput.

• Bash Prompt HOWTO   discusses using tput to apply text effects to the shell 
prompt.

tput  75

https://tldp.org/HOWTO/Bash-Prompt-HOWTO/x405.html
http://mywiki.wooledge.org/BashFAQ/037
http://wiki.bash-hackers.org/scripting/terminalcodes/




6 dialog
If we look at contemporary software, we might be surprised to learn that the majority of 
code in most programs today has very little to do with the real work for which the 
program was intended. Rather, the majority of code is used to create the user interface. 
Modern graphical programs need large amounts of CPU time and memory for their 
sophisticated eye candy. This helps explain why command line programs usually use so 
little memory and CPU compared to their GUI counterparts.

Still, the command line interface is often inconvenient. If only there were some way to 
emulate common graphical user interface features on a text display.

In this adventure, we’re going to look at dialog, a program that does just that. It displays
various kinds of dialog boxes that we can incorporate into our shell scripts to give them a 
much friendlier face. dialog dates back a number of years and is now just one member 
of a family of programs that attempt to solve the user interface problem for command line
users. The More Redirection adventure is a suggested prerequisite to this adventure.

Features
dialog is a fairly large and complex program (it has almost 100 command line options), 
but compared to the typical graphical user interface, it’s a real lightweight. Still, it is 
capable of many user interface tricks. With dialog, we can generate the following types 
of dialog boxes (version 1.2 shown):

Dialog Option Description
Build List --buildlist Displays two lists, side-by-side. The list on the 

left contains unselected items, the list on the 
right selected items. The user can move items 
from one list to the other.

Calendar --calendar Displays a calendar and allow the user to select 
a date.

Checklist --checklist Presents a list of choices and allow the user to 
select one or more items.

Directory Select --dselect Displays a directory selection dialog.
Edit Box --editbox Displays a rudimentary text file editor.
Form --form Allows the user to enter text into multiple 

fields.
File Select --fselect A file selection dialog.
Gauge --gauge Displays a progress indicator showing the 

percentage of completion.
Info Box --infobox Displays a message (with an optional timed 

pause) and terminates.
Input Box --inputbox Prompts the user to enter/edit a text field.
Menu Box --menubox Displays a list of choices.

dialog  77



Dialog Option Description
Message Box --msgbox Displays a text message and waits for the user 

to respond.
Password Box --passwordbox Similar to an input box, but hides the user’s 

entry.
Pause --pause Displays a text message and a countdown 

timer. The dialog terminates when the timer 
runs out or when the user presses either the OK
or Cancel button.

Program Box --programbox Displays the output of a piped command. When
the command completes, the dialog waits for 
the user to press an OK button.

Progress Box --progressbox Similar to the program box except the dialog 
terminates when the piped command 
completes, rather than waiting for the user to 
press OK.

Radio List Box --radiolist Displays a list of choices and allows the user to
select a single item. Any previously selected 
item becomes unselected.

Range Box --rangebox Allows the user to select a numerical value 
from within a specified range using a 
keyboard-based slider.

Tail Box --tailbox Displays a text file with real-time updates. 
Works like the command tail -f.

Text Box --textbox A simple text file viewer. Supports many of the
same keyboard commands as less.

Time Box --timebox A dialog for entering a time of day.
Tree View --treeview Displays a list of items in a tree-shaped 

hierarchy.
Yes/No Box --yesno Displays a text message and gives the user a 

chance to respond with either “Yes” or “No.”

Supported dialog boxes

Here are some examples:

78  dialog



Screen shot of the yesno dialog

Screen shot of the radiolist dialog

dialog  79



Screen shot of the fselect dialog

Availability
dialog is available from most distribution repositories as the package “dialog”. Besides 
the program itself, the dialog package includes a fairly comprehensive man page and a 
large set of sample programs that demonstrate the various dialog boxes it can display. 
After installation on a Debian-based system, these sample programs can be found in the
/usr/share/doc/dialog/examples directory. Other distributions are similar.

By the way, using Midnight Commander   to browse the examples directory is a great way 
to run the example programs and to study the scripts themselves:

80  dialog

lc3_adv_dialog.odt/lc3_adv_mc.php


Browsing the examples with Midnight Commander

How it Works
On the surface, dialog appears straightforward. We launch dialog followed by one or 
more common options (options that apply regardless of the desired dialog box) and then 
the box option and its associated parameters. The tricky part of using dialog is getting 
data out of it.

The data that dialog takes in (such as a string entered into a input box) is normally 
returned on standard error. This is because dialog uses standard output to display text on
the terminal when it is drawing the dialog box itself. There are a couple of techniques we 
can use to handle the returned data. Let’s take a look at them.

Method 1: Store the Results in a Temporary File
The first method is to use a temporary file. The sample programs supplied with dialog 
provide some examples (this script has been modified from the original for clarity):
#!/bin/bash

# inputbox - demonstrate the input dialog box with a temporary file

# Define the dialog exit status codes
: ${DIALOG_OK=0}
: ${DIALOG_CANCEL=1}
: ${DIALOG_HELP=2}
: ${DIALOG_EXTRA=3}
: ${DIALOG_ITEM_HELP=4}
: ${DIALOG_ESC=255}

dialog  81



# Create a temporary file and make sure it goes away when we're dome
tmp_file=$(tempfile 2>/dev/null) || tmp_file=/tmp/test$$
trap "rm -f $tmp_file" 0 1 2 5 15

# Generate the dialog box
dialog --title "INPUT BOX" \
  --clear  \
  --inputbox \
"Hi, this is an input dialog box. You can use \n
this to ask questions that require the user \n
to input a string as the answer. You can \n
input strings of length longer than the \n
width of the input box, in that case, the \n
input field will be automatically scrolled. \n
You can use BACKSPACE to correct errors. \n\n
Try entering your name below:" \
16 51 2> $tmp_file

# Get the exit status
return_value=$?

# Act on it
case $return_value in
  $DIALOG_OK)
    echo "Result: `cat $tmp_file`";;
  $DIALOG_CANCEL)
    echo "Cancel pressed.";;
  $DIALOG_HELP)
    echo "Help pressed.";;
  $DIALOG_EXTRA)
    echo "Extra button pressed.";;
  $DIALOG_ITEM_HELP)
    echo "Item-help button pressed.";;
  $DIALOG_ESC)
    if test -s $tmp_file ; then
      cat $tmp_file
    else
      echo "ESC pressed."
    fi
    ;;
esac

The first part of the script defines some constants that are used to represent the six 
possible exit status values supported by dialog. They are used to tell the calling script 
which button on the dialog box (or alternately, the Esc key) was used to terminate the 
dialog. The construct used to do this is somewhat interesting. First, each line begins with 
the null command “:” which is a command that does nothing. Yes, really. It intentionally 
does nothing, because sometimes we need a command (for syntax reasons) but don’t 
actually want to do anything. Following the null command is a parameter expansion. The 
expansion is similar in form to one we covered in Chapter 34 of TLCL:

${parameter:=value}

This sets a default value for a parameter (variable) that is either unset (it does not exist at 
all), or is set, but empty. The author of the example code is being very cautious here and 

82  dialog



has removed the colon from the expansion. This changes the meaning of the expansion to
mean that a default value is set only if the parameter is unset rather than unset or empty.

The next part of the example creates a temporary file named tmp_file by using the 
tempfile command, which is a program used to create a temporary file in a secure 
manner. Next, we set a trap to make sure that the temporary file is deleted if the program 
is somehow terminated. Neatness counts!

At last, we get to the dialog command itself. We start off setting a title for the input box 
and specify the --clear option to tell dialog that we want to erase any previous dialog 
box from the screen. Next, we indicate the type of dialog box we want and its required 
arguments. These include the text to be displayed above the input field, and the desired 
height and width of the box. Though the example specifies exact dimensions for the box, 
we could also specify zero for both values and dialog will attempt to automatically 
determine the correct size.

Since dialog normally outputs its results to standard error, we redirect its file descriptor 
to our temporary file for storage.

The last thing we have to do is collect the exit status of the command in a variable 
(return_value) so that we can figure out which button the user pressed to terminate the 
dialog box. At the end of the script, we look at this value and act accordingly.

Method 2: Use Command Substitution and Redirection
The second method of receiving data from dialog involves redirection. In the script that 
follows, we pass the results from dialog to a variable rather than a file. To do this, we 
need to first perform some redirection.
#!/bin/bash

# inputbox - demonstrate the input dialog box with redirection

# Define the dialog exit status codes
: ${DIALOG_OK=0}
: ${DIALOG_CANCEL=1}
: ${DIALOG_HELP=2}
: ${DIALOG_EXTRA=3}
: ${DIALOG_ITEM_HELP=4}
: ${DIALOG_ESC=255}

# Duplicate (make a backup copy of) file descriptor 1 
# on descriptor 3
exec 3>&1
 
# Generate the dialog box while running dialog in a subshell
result=$(dialog \
  --title "INPUT BOX" \
  --clear  \
  --inputbox \

dialog  83



"Hi, this is an input dialog box. You can use \n
this to ask questions that require the user \n
to input a string as the answer. You can \n
input strings of length longer than the \n
width of the input box, in that case, the \n
input field will be automatically scrolled. \n
You can use BACKSPACE to correct errors. \n\n
Try entering your name below:" \
16 51 2>&1 1>&3)

# Get dialog's exit status
return_value=$?

# Close file descriptor 3
exec 3>&-

# Act on the exit status
case $return_value in
  $DIALOG_OK)
    echo "Result: $result";;
  $DIALOG_CANCEL)
    echo "Cancel pressed.";;
  $DIALOG_HELP)
    echo "Help pressed.";;
  $DIALOG_EXTRA)
    echo "Extra button pressed.";;
  $DIALOG_ITEM_HELP)
    echo "Item-help button pressed.";;
  $DIALOG_ESC)
    if test -n "$result" ; then
      echo "$result"
    else
      echo "ESC pressed."
    fi
    ;;
esac

At first glance, the redirection may seem nonsensical. First, we duplicate file descriptor 1 
(stdout) to descriptor 3 using exec (this was covered in More Redirection) to create a 
backup copy of descriptor 1.

The next step is to perform a command substitution and assign the output of the dialog 
command to the variable result. The command includes redirections of descriptor 2 
(stderr) to be the duplicate of descriptor 1 and lastly, descriptor 1 is restored to its original
value by duplicating descriptor 3 which contains the backup copy. What might not be 
immediately apparent is why the last redirection is needed. Inside the subshell, standard 
output (descriptor 1) does not point to the controlling terminal. Rather, it is pointing to a 
pipe that will deliver its contents to the variable result. Since dialog needs standard 
output to point to the terminal so that it can display the input box, we have to redirect 
standard error to standard output (so that the output from dialog ends up in the result 
variable), then redirect standard output back to the controlling terminal.

So, which method is better, temporary file or command substitution? Probably command 
substitution, since it avoids file creation.

84  dialog

lc3_adv_dialog.odt/lc3_adv_redirection.php


Before and After
Now that we have a basic grip on how to use dialog, let’s apply it to a practical example.

Here we have an “ordinary” script. It’s a menu-driven system information program 
similar to one discussed in Chapter 29 of TLCL:
#!/bin/bash

# while-menu: a menu-driven system information program

DELAY=3 # Number of seconds to display results

while true; do
  clear
  cat << _EOF_
Please Select:

1. Display System Information
2. Display Disk Space
3. Display Home Space Utilization
0. Quit

_EOF_

  read -p "Enter selection [0-3] > "

  if [[ $REPLY =~ ^[0-3]$ ]]; then
    case $REPLY in
      1)
        echo "Hostname: $HOSTNAME"
        uptime
        sleep $DELAY
        continue
        ;;
      2)
        df -h
        sleep $DELAY
        continue
        ;;
      3)
        if [[ $(id -u) -eq 0 ]]; then
          echo "Home Space Utilization (All Users)"
          du -sh /home/* 2> /dev/null
        else
          echo "Home Space Utilization ($USER)"
          du -sh $HOME 2> /dev/null
        fi
        sleep $DELAY
        continue
        ;;
      0)
        break
        ;;
    esac
  else
    echo "Invalid entry."
    sleep $DELAY
  fi
done

dialog  85



echo "Program terminated."

A script displaying a text menu

The script displays a simple menu of choices. After the user enters a selection, the 
selection is validated to make sure it is one of the permitted choices (the numerals 0-3) 
and if successfully validated, a case statement is used to carry out the selected action. 
The results are displayed for the number of seconds defined by the DELAY constant, after 
which the whole process is repeated until the user selects the menu choice to exit the 
program.

Here is the script modified to use dialog to provide a new user interface:

#!/bin/bash

# while-menu-dialog: a menu driven system information program

DIALOG_CANCEL=1
DIALOG_ESC=255
HEIGHT=0
WIDTH=0

display_result() {
  dialog --title "$1" \
    --no-collapse \
    --msgbox "$result" 0 0
}

while true; do
  exec 3>&1
  selection=$(dialog \
    --backtitle "System Information" \
    --title "Menu" \
    --clear \
    --cancel-label "Exit" \

86  dialog



    --menu "Please select:" $HEIGHT $WIDTH 4 \
    "1" "Display System Information" \
    "2" "Display Disk Space" \
    "3" "Display Home Space Utilization" \
    2>&1 1>&3)
  exit_status=$?
  exec 3>&-
  case $exit_status in
    $DIALOG_CANCEL)
      clear
      echo "Program terminated."
      exit
      ;;
    $DIALOG_ESC)
      clear
      echo "Program aborted." >&2
      exit 1
      ;;
  esac
  case $selection in
    1 )
      result=$(echo "Hostname: $HOSTNAME"; uptime)
      display_result "System Information"
      ;;
    2 )
      result=$(df -h)
      display_result "Disk Space"
      ;;
    3 )
      if [[ $(id -u) -eq 0 ]]; then
        result=$(du -sh /home/* 2> /dev/null)
        display_result "Home Space Utilization (All Users)"
      else
        result=$(du -sh $HOME 2> /dev/null)
        display_result "Home Space Utilization ($USER)"
      fi
      ;;
  esac
done

dialog  87



Script displaying a dialog menu

Displaying results with a msgbox

As we can see, the script has some structural changes. First, we no longer have to validate
the user’s selection. The menu box only allows valid choices. Second, there is a function 
defined near the beginning to display the output of each selection.

We also notice that several of dialog’s common options have been used:

88  dialog



• --no-collapse prevents dialog from reformatting message text. Use this when 
the exact presentation of the text is needed.

• --backtitle sets the title of the background under the dialog box.

• --clear clears the background of any previous dialog box.

• --cancel-label sets the string displayed on the “cancel” button. In this script, it is
set to “Exit” since that is a better description of the action taken when it is selected.

Limitations
While it’s true that dialog can produce many kinds of dialog boxes, care must be taken 
to remember that dialog has significant limitations. Some of the dialog boxes have 
rather odd behaviors compared to their traditional GUI counterparts. For example, the 
edit box used to edit text files cannot perform cut and paste and files to be edited cannot 
contain tab characters. The behavior of the file box is more akin to the shell’s tab 
completion feature than to a GUI file selector.

Summing Up
The shell is not really intended for large, interactive programs, but using dialog can 
make small to moderate interactive programs possible. It provides a useful variety of 
dialog boxes, allowing many types of user interactions which would be very difficult to 
implement with the shell alone. If we keep our expectations modest, dialog can be a 
great tool.

Further Reading
• The dialog man page is well-written and contains a complete listing of its numerous

options.

• dialog normally includes a large set of example programs which can be found in the
/usr/share/doc/dialog directory.

• The dialog project home page can be found at https://invisible-island.net/dialog/

dialog  89

https://invisible-island.net/dialog/




7 AWK
One of the great things we can do in the shell is embed other programming languages 
within the body of our scripts. We have seen hints of this with the stream editor sed, and 
the arbitrary precision calculator program bc. By using the shell’s single quoting 
mechanism to isolate text from shell expansion, we can freely express other programming
languages, provided we have a suitable language interpreter to execute them.

In this adventure, we are going to look at one such program, awk.

History
The AWK programming language is truly one of the classic tools used in Unix. It dates 
back to the very earliest days of the Unix tradition. It was originally developed in the late 
1970’s at AT&T Bell Telephone Laboratories by Alfred Aho, Peter Weinberger, and Brian
Kernighan. The name “AWK” comes from the last names of the three authors. It 
underwent major improvements in 1985 with the release of nawk or “new awk.” It is that 
version that we still use today, though it is usually just called awk.

Availability
awk is a standard program found in most every Linux distribution. Two free/open source 
versions of the program are in common use. One is called mawk (short for Mike’s awk, 
named for its original author, Mike Brennan) and gawk (GNU awk). Both versions fully 
implement the 1985 nawk standard as well as add a variety of extensions. For our 
purposes, either version is fine, since we will be focusing on the traditional nawk features.
In most distributions, the name awk is symbolically linked to either mawk or gawk.

So, What’s it Good For?
Though AWK is fairly general purpose, it is really designed to create filters, that is, 
programs that accept standard input, transform data, and send it to standard output. In 
particular, AWK is very good at processing columnar data. This makes it a good choice 
for developing report generators, and tools that are used to re-format data. Since it has 
strong regular expression support, it’s good for very small text extraction and 
reformatting problems, too. Like sed, many AWK programs are just one line long.

In recent years, AWK has fallen a bit out of fashion, being supplanted by other, newer, 
interpreted languages such as Perl and python, but AWK still has some advantages:

• It’s easy to learn. The language is not overly complex and has a syntax much like 
the C programming language, so learning it will be useful in the future when we 
study other languages and tools.

• It really excels at a solving certain types of problems.

AWK  91



How it Works
The structure of an AWK program is somewhat unique among programming languages. 
Programs consist of a series of one or more pattern and action pairs. Before we get into 
that though, let’s look at what the typical AWK program does.

We already know that the typical AWK program acts as a filter. It reads data from 
standard input, and outputs filtered data on standard output. It reads data one record at a 
time. By default, a record is a line of text terminated by a newline character. Each time a 
record is read, AWK automatically separates the record into fields. Fields are, again by 
default, separated by whitespace. Each field is assigned to a variable, which is given a 
numeric name. Variable $1 is the first field, $2 is the second field, and so on. $0 signifies 
the entire record. In addition, a variable named NF is set containing the number of fields 
detected in the record.

Pattern/action pairs are tests and corresponding actions to be performed on each record. If
the pattern is true, then the action is performed. When the list of patterns is exhausted, the
AWK program reads the next record and the process is repeated.

Let’s try a really simple case. We’ll filter the output of an ls command:

me@linuxbox ~ $ ls -l /usr/bin | awk '{print $0}'

The AWK program is contained within the single quotes following the awk command. 
Single quotes are important because we do not want the shell to attempt any expansion on
the AWK program, since its syntax has nothing to do with the shell. For example, $0 
represents the value of the entire record the AWK program read on standard input. In 
AWK, the $ means “field” and is not a trigger for parameter expansion as it is in the shell.

Our example program consists of a single action with no pattern present. This is allowed 
and it means that every record matches the pattern. When we run this command, it simply
outputs every line of input much like the cat command.

If we look at a typical line of output from ls -l, we see that it consists of 9 fields, each 
separated from its neighbor by one or more whitespace characters:

-rwxr-xr-x 1 root root         265 Apr 17  2012 zxpdf

Let’s add a pattern to our program so it will only print lines with more than 9 fields:

me@linuxbox ~ $ ls -l /usr/bin | awk 'NF > 9 {print $0}'

We now see a list of symbolic links in /usr/bin since those directory listings contain 
more than 9 fields. This pattern will also match entries with file names containing 
embedded spaces, since they too will have more than 9 fields.

92  AWK



Special Patterns
Patterns in AWK can have many forms. There are conditional expressions like we have 
just seen. There are also regular expressions, as we would expect. There are two special 
patterns called BEGIN and END. The BEGIN pattern carries out its corresponding action
before the first record is read. This is useful for initializing variables, or printing headers 
at the beginning of output. Likewise, the END pattern performs its corresponding action 
after the last record is read from the input file. This is good for outputting summaries 
once the input has been processed.

Let’s try a more elaborate example. We’ll assume for the moment that the directory does 
not contain any file names with embedded spaces (though this is never a safe 
assumption). We could use the following script to list symbolic links:
#!/bin/bash

# Print a directory report

ls -l /usr/bin | awk '
    BEGIN {
        print "Directory Report"
        print "================"
    }

    NF > 9 {
        print $9, "is a symbolic link to", $NF
    }

    END {
        print "============="
        print "End Of Report"
    }

'

In this example, we have 3 pattern/action pairs in our AWK program. The first is a 
BEGIN pattern and its action that prints the report header. We can spread the action over 
several lines, though the opening brace “{” of the action must appear on the same line as 
the pattern.

The second pattern tests the current record to see if it contains more than 9 fields and, if 
true, the 9th field is printed, followed by some text and the final field in the record. 
Notice how this was done. The NF variable is preceded by a “$”, thus it refers to the 
NFth field rather than the value of NF itself.

Lastly, we have an END pattern. Its corresponding action prints the “End Of Report” 
message once all of the lines of input have been read.

AWK  93



Invocation
There are three ways we can run an AWK program. We have already seen how to embed 
a program in a shell script by enclosing it inside single quotes. The second way is to place
the awk script in its own file and call it from the awk program like so:
awk -f program_file

Lastly, we can use the shebang mechanism to make the AWK script a standalone program
like a shell script:
#!/usr/bin/awk -f

# Print a directory report

BEGIN {
    print "Directory Report"
    print "================"
}

NF > 9 {
    print $9, "is a symbolic link to", $NF
}

END {
    print "============="
    print "End Of Report"
}

The Language
Let’s take a look at the features and syntax of AWK programs.

Program Format
The formatting rules for AWK programs are pretty simple. Actions consist of one or more
statements surrounded by braces ({}) with the starting brace appearing on the same line 
as the pattern. Blank lines are ignored. Comments begin with a pound sign (#) and may 
appear at the end of any line. Long statements may be broken into multiple lines using 
line continuation characters (a backslash followed immediately by a newline). Lists of 
parameters separated by commas may be broken after any comma. Here is an example:
BEGIN { # The action's opening brace must be on same line as the pattern

  # Blank lines are ignored

  # Line continuation characters can be used to break long lines
  print \
    $1, # Parameter lists may be broken by commas
    $2, # Comments can appear at the end of any line
    $3

  # Multiple statements can appear on one line if separated by
  # a semicolon
  print "String 1"; print "String 2"

94  AWK



} # Closing brace for action

Patterns
Here are the most common types of patterns used in AWK:

BEGIN and END
As we saw earlier, the BEGIN and END patterns perform actions before the first record is
read and after the last record is read, respectively.

relational-expression
Relational expressions are used to test values. For example, we can test for equivalence:
$1 == "Fedora"

or for relations such as:
$3 >= 50

It is also possible to perform calculations like:
$1 * $2 < 100

/regular-expression/
AWK supports extended regular expressions like those supported by egrep. Patterns 
using regular expression can be expressed in two ways. First, we can enclose a regular 
expression in slashes and a match is attempted on the entire record. If a finer level of 
control is needed, we can provide an expression containing the string to be matched using
the following syntax:

expression ~ /regexp/

For example, if we only wanted to attempt a match on the third field in a record, we could
do this:
$3 ~ /^[567]/

From this, we can think of the “~” as meaning “matches” or “contains”, thus we can read 
the pattern above as “field 3 matches the regular expression ^[567]”.

pattern logical-operator pattern
It is possible to combine patterns together using the logical operators || and &&, meaning 
OR and AND, respectively. For example, if we want to test a record to see if the first field
is a number greater than 100 and the last field is the word “Debit”, we can do this:
$1 > 100 && $NF == "Debit"

AWK  95



! pattern
It is also possible to negate a pattern, so that only records that do not match a specified 
pattern are selected.

pattern, pattern
Two patterns separated by a comma is called a range pattern. With it, once the first 
pattern is matched, every subsequent record matches until the second pattern is matched. 
Thus, this type of pattern will select a range of records. Let’s imagine that we have a list 
of records and that the first field in each record contains a sequential record number:
0001    field   field   field
0002    field   field   field
0003    field   field   field

and so on. And let’s say that we want to extract records 0050 through 0100, inclusive. To 
do so, we could use a range pattern like this:
$1 == "0050", $1 == "0100"

Fields and Records
The AWK language is so useful because of its ability to automatically separate fields and 
records. While the default is to separate records by newlines and fields by whitespace, 
this can be adjusted. The /etc/passwrd file, for example, does not separate its fields 
with whitespace; rather, it uses colons (:). AWK has a built in variable named FS (field 
separator) that defines the delimiter separating fields in a record. Here is an AWK 
program that will list the user ID and the user’s name from the file:
BEGIN { FS = ":" }
{ print $1, $5 }

This program has two pattern/action pairs. The first action is performed before the first 
record is read and sets the input field separator to be the colon character.

The second pair contains only an action and no pattern. This will match every record. The
action prints the first and fifth fields from each record.

The FS variable may contain a regular expression, so really powerful methods can be 
used to separate fields.

Records are normally separated by newlines, but this can be adjusted too. The built-in 
variable RS (record separator) defines how records are delimited. A common type of 
record consists of multiple lines of data separated by one or more blank lines. AWK has a
shortcut for specifying the record separator in this case. We just define RS to be an empty
string:
RS = ""

96  AWK



Note that when this is done, newlines, in addition to any other specified characters, will 
always be treated as field separators regardless of how the FS variable is set. When we 
process multi-line records, we will often want to treat each line as a separate field, so 
doing this is often desirable:
BEGIN { FS = "\n"; RS = "" }

Variables and Data Types
AWK treats data as either a string or a number, depending on its context. This can 
sometimes become an issue with numbers. AWK will often treat numbers as strings 
unless something specifically “numeric” is done with them.

We can force AWK to treat a string of digits as a number by performing some arithmetic 
on it. This is most easily done by adding zero to the number:
n = 105 + 0

Likewise, we can get AWK to treat a string of digits as a string by concatenating an 
empty string:
s = 105 ""

String concatenation in AWK is performed using a space character as an operator - an 
unusual feature of the language.

Variables are created as they are encountered (no prior declaration is required), just like 
the shell. Variable names in AWK follow the same rules as the shell. Names may consist 
of letters, numbers, and underscore characters. Like the shell, the first character of a 
variable name must not be a number. Variable names are case sensitive.

Built-in Variables
We have already looked at a few of AWK’s built-in variables. Here is a list of the most 
useful ones:

FS - Field separator
This variable contains a regular expression that is used to separate a record into fields. Its 
initial value separates fields with whitespace. AWK supports a shortcut to return this 
variable to its original value:
FS = " "

The value of FS can also be set using the -F option on the command line. For example, 
we can quickly extract the user name and UID fields from the /etc/passwd file like this:
awk -F: '{print $1, $3}' /etc/passwd

AWK  97



NF - Number of fields
This variable updates each time a record is read. We can easily access the last field in the 
record by referring to $NF.

NR - Record number
This variable increments each time a record is read, thus it contains the total number of 
records read from the input stream. Using this variable, we could easily simulate a wc -l 
command with:
awk 'END {print NR}'

or number the lines in a file with:
awk '{print NR, $0}'

OFS - Output field separator
This string is used to separate fields when printing output. The default is a single space. 
Setting this can be handy when reformatting data. For example, we could easily change a 
table of values to a CSV (comma separated values) file by setting OFS to equal “,”. To 
demonstrate, here is a program that reads our directory listing and outputs a CSV stream:
ls -l | awk 'BEGIN {OFS = ","}
NF == 9 {print $1,$2,$3,$4,$5,$6,$7,$8,$9}'

We set the pattern to only match input lines containing 9 fields. This eliminates symbolic 
links and other weird file names from the data to be processed.

Each line of the resulting output would resemble this:

-rwxr-xr-x,1,root,root,100984,Jan,11,2015,a2p

If we had omitted setting OFS, the print statement would use the default value (a single 
space):
ls -l | awk 'NF == 9 {print $1,$2,$3,$4,$5,$6,$7,$8,$9}'

Which would result in each line of output resembling this:
-rwxr-xr-x 1 root root 100984 Jan 11 2015 a2p

ORS - Output record separator
This is the string used to separate records when printing output. The default is a newline 
character. We could use this variable to easily double-space a file by setting ORS to equal
two newlines:
ls -l | awk 'BEGIN {ORS = "\n\n"} {print}'

98  AWK



RS - Record separator
When reading input, AWK interprets this string as the end of record marker. The default 
value is a newline.

FILENAME
If AWK is reading its input from a file specified on the command line, then this variable 
contains the name of the file.

FNR - File record number
When reading input from a file specified on the command line, AWK sets this variable to 
the number of the record read from that file.

Arrays
Single-dimensional arrays are supported in AWK. Data contained in array elements may 
be either numbers or strings. Array indexes may also be either strings (for associative 
arrays) or numbers.

Assigning values to array elements is done like this:
a[1] = 5        # Numeric index
a["five"] = 5   # String index

Though AWK only supports single dimension arrays (like bash), it also provides a 
mechanism to simulate multi-dimensional arrays. When assigning an array index, it is 
possible to use this form to represent more than one dimension:
a[j,k] = "foo"

When AWK sees this construct, it builds an index consisting of the strings j and k 
separated by the contents of the built-in variable SUBSEP. By default, SUBSEP is set to 
“\034” (character 34 octal, 28 decimal). This ASCII control code is fairly obscure and 
thus unlikely to appear in ordinary text, so it’s pretty safe for AWK to use.

Note that both mawk and gawk implement language extensions to support multi-
dimensional arrays in a more formal way. Consult their respective documentation for 
details. If a portability is needed, use the method above rather than the implementation-
specific feature.

We can delete arrays and array elements this way:
delete a[i]     # delete a single element
delete a        # delete array a

Arithmetic and Logical Expressions
AWK supports a pretty complete set of arithmetic and logical operators:

AWK  99



Operators
Assignment =  +=  -=  *=  /=  %=  ^=  ++  --
Relational <  >   <=  >=  ==  !=
Arithmetic +  -   *   /   %   ^
Matching ~  !~
Array in
Logical ||  &&

Arithmetic and logical operators

These operators behave like those in the shell; however, unlike the shell, which is limited 
to integer arithmetic, AWK arithmetic is floating point. This makes AWK a good way to 
do more complex arithmetic than the shell alone.

Arithmetic and logical expressions can be used in both patterns and actions. Here’s an 
example that counts the number of lines containing exactly 9 fields:
ls -l /usr/bin | awk 'NF == 9 {count++} END {print count}'

This AWK program consists of 2 pattern/action pairs. The first one matches lines where 
the number of fields is equal to 9. The action creates and increments a variable named 
count. Each time a line with exactly 9 fields is encountered in the input stream, count is 
incremented by 1.

The second pair matches when the end of the input stream is reached and the resulting 
action prints the final value of count.

Using this basic form, let’s try something a little more useful; a program that calculates 
the total size of the files in the list:
ls -l /usr/bin | awk 'NF >=9 {total += $5} END {print total}'

Here is a slight variation (with shortened variable names to make it a little more concise) 
that calculates the average size of the files:
ls -l /usr/bin | awk 'NF >=9 {c++; t += $5} END {print t / c}'

Flow Control
AWK has many of the same flow control statements that we’ve seen previously in the 
shell (with the notable exception of case, though we can think of an AWK program as one
big case statement inside a loop) but the syntax more closely resembles that of the C 
programming language. Actions in AWK often contain complex logic consisting of 
various statements and flow control instructions. A statement in this context can be a 
simple statement like:
a = a + 1

Or a compound statement enclosed in braces such as:
{a = a + 1; b = b * a}

100  AWK



if ( expression ) statement

if ( expression ) statement else statement

The if/then/else construct in AWK behaves the way we would expect. AWK evaluates an 
expression in parenthesis and if the result is non-zero, the statement is carried out. We can
see this behavior by executing the following commands:
awk 'BEGIN {if (1) print "true"; else print "false"}'
awk 'BEGIN {if (0) print "true"; else print "false"}'

Relational expressions such as (a < b) will also evaluate to 0 or 1.

In the example below, we construct a primitive report generator that counts the number of
lines that have been output and, if the number exceeds the length of a page, a formfeed 
character is output and the line counter is reset:
ls -l /usr/bin | awk '
BEGIN {
    line_count = 0
    page_length = 60
}

{
    line_count++
    if (line_count < page_length)
        print
    else {
        print "\f" $0
        line_count = 0
    }
}
'

While the above might be the most obvious way to code this, our knowledge of how 
evaluations are actually performed, allows us to code this example in a slightly more 
concise way by using some arithmetic:
ls -l /usr/bin | awk '
BEGIN {
    page_length = 60
}

{
    if (NR % page_length)
        print
    else
        print "\f" $0
}
'

Here we exploit the fact that the page boundaries will always fall on even multiples of the
page length. If page_length equals 60 then the page boundaries will fall on lines 60, 
120, 180, 240, and so on. All we have to do is calculate the remainder (modulo) on the 

AWK  101



number of lines processed in the input stream (NR) divided by the page length and see if 
the result is zero, and thus an even multiple.

AWK supports an expression that’s useful for testing membership in an array:

(var in array)

where var is an index value and array is an array variable. Using this expression tests if 
the index var exists in the specified array. This method of testing for array membership 
avoids the problem of inadvertently creating the index by testing it with methods such as:
if (array[var] != "")

When the test is attempted this way, the array element var is created, since AWK creates 
variables simply by their use. When the (var in array) form is used, no variable is 
created.

To test for array membership in a multi-dimensional array, the following syntax is used:

((var1,var2) in array)

for ( expression ; expression ; expression ) statement
The for loop in AWK closely resembles the corresponding one in the C programming 
language. It is comprised of 3 expressions. The first expression is usually used to 
initialize a counter variable, the second defines when the loop is completed, and the third 
defines how the loop is incremented or advanced at each iteration. Here is a 
demonstration using a for loop to print fields in reverse order:
ls -l | awk '{s = ""; for (i = NF; i > 0; i--) s = s $i OFS; print s}'

In this example we create an empty string named s, then begin a loop that starts with the 
number of fields in the current input line (i = NF) and counts down (i--) until we reach 
the first field (i > 0). Each iteration of the loop causes the current field and the output 
field separator to be concatenated to the string s (s  = s $i OFS). After the loop 
concludes, we print the resulting value of string s.

for ( var in array ) statement
AWK has a special flow control statement for traversing the indexes of an array. Here is 
an example of what it does:
awk 'BEGIN {for (i=0; i<10; i++) a[i]="foo"; for (i in a) print i}'

In this program, we have a single BEGIN pattern/action that performs the entire exercise 
without the need for an input stream. We first create an array a and add 10 elements, each
containing the string “foo”. Next, we use for (i in a) to loop through all the indexes 
in the array and print each index. It is important to note that the order of the arrays in 
memory is implementation dependent, meaning that it could be anything, so we cannot 
rely on the results being in any particular order. We’ll look at how to address this problem
a little later.

102  AWK



Even without sorted order, this type of loop is useful if we need to process every element 
in an array. For example, we could delete every element of an array like this:
for (i in a) delete a[i]

while ( expression ) statement

do statement while ( expression )

The while and do loops in AWK are pretty straightforward. We determine a condition that
must be maintained for the loop to continue. We can demonstrate this using our field 
reversal program (we’ll type it out in multiple lines to make the logic easier to follow):
ls -l | awk '{
    s = ""
    i = NF
    while (i > 0) {
        s = s $i OFS
        i--
    }
    print s
}'

The do loop is similar to the while loop; however the do loop will always execute its 
statement at least once, whereas the while loop will only execute its statement if the 
initial condition is met.

break
continue
next
The break, continue, and next keywords are used to “escape” from loops. break and 
continue behave like their corresponding commands in the shell. continue tells AWK 
to stop and continue with the next iteration of the current loop. break tells AWK to exit 
the current loop entirely. The next keyword tells AWK to skip the remainder of the 
current program and begin processing the next record of input.

exit expression
As with the shell, we can tell AWK to exit and provide an optional expression that sets 
AWK’s exit status.

Regular Expressions
Regular expressions in AWK work like those in egrep, a topic we covered in Chapter 19 
of TLCL. It is important to note that back references are not supported and that some 

AWK  103



versions of AWK (most notably mawk versions prior to 1.3.4) do not support POSIX 
character classes.

Regular expressions are most often used in patterns, but they are also used in some of the 
built-in variables such as FS and RS, and they have various roles in the string functions 
which we will discuss shortly.

Let’s try using some simple regular expressions to tally the different file types in our 
directory listing (we’ll make clever use of an associative array too).
ls -l /usr/bin | awk '
$1 ~ /^-/ {t["Regular Files"]++}
$1 ~ /^d/ {t["Directories"]++}
$1 ~ /^l/ {t["Symbolic Links"]++}
END {for (i in t) print i ":\t" t[i]}
'

In this program, we use regular expressions to identify the first character of the first field 
and increment the corresponding element in array t. Since we can use strings as array 
indexes in AWK, we spell out the file type as the index. This makes printing the results in
the END action easy, as we only have to traverse the array with for (i in t) to obtain 
both the name and the accumulated total for each type.

Output Functions

print expr1, expr2, expr3,…
As we have seen, print accepts a comma-separated list of arguments. An argument can 
be any valid expression; however, if an expression contains a relational operator, the 
entire argument list must be enclosed in parentheses.

The commas are important, because they tell AWK to separate output items with the 
output field separator (OFS). If omitted, AWK will interpret the members of the argument
list as a single expression of string concatenation.

printf(format, expr1, expr2, expr3,…)
In AWK, printf is like the corresponding shell built-in (see TLCL Chapter 21 for 
details). It formats its list of arguments based the contents of a format string. Here is an 
example where we output a list of files and their sizes in kilobytes:
ls -l /usr/bin | awk '{printf("%-30s%8.2fK\n", $9, $5 / 1024)}'

Writing to Files and Pipelines
In addition to sending output to stdout, we can also send output to files and pipelines.
ls -l /usr/bin | awk '
$1 ~ /^-/ {print $0 > "regfiles.txt"}
$1 ~ /^d/ {print $0 > "directories.txt"}

104  AWK



$1 ~ /^l/ {print $0 > "symlinks.txt"}
'

Here we see a program that writes separate lists of regular files, directories, and symbolic
links.

AWK also provides a >> operator for appending to files, but since AWK only opens a file 
once per program execution, the > causes AWK to open the file at the beginning of 
execution and truncate the file to zero length much like we see with the shell. However, 
once the file is open, it stays open and each subsequent write appends contents to the file. 
The >> operator behaves in the same manner, but when the file is initially opened it is not
truncated and all content is appended (i.e., it preserves the contents of an existing file).

AWK also allows output to be sent to pipelines. Consider this program, where we read 
our directory into an array and then output the entire array:
ls -l /usr/bin | awk '
$1 ~ /^-/ {a[$9] = $5}
END {for (i in a)
    {print a[i] "\t" i}
}
'

If we run this program, we notice that the array is output in a seemingly random 
“implementation dependent” order. To correct this, we can pipe the output through sort:
ls -l /usr/bin | awk '
$1 ~ /^-/ {a[$9] = $5}
END {for (i in a)
    {print a[i] "\t" i | "sort -nr"}
}
'

Reading Data
As we have seen, AWK programs most often process data supplied from standard input. 
However, we can also specify input files on the command line:
awk 'program' file...

Knowing this, we can, for example, create an AWK program that simulates the cat 
command:
awk '{print $0}' file1 file2 file3

or wc:
awk '{chars += length($0); words += NF}
    END {print NR, words, chars + NR}' file1

This program has a couple of interesting features. First, it uses the AWK string function 
length to obtain the number of characters in a string. This is one of many string 
functions that AWK provides, and we will talk more about them in a bit. The second 
feature is the chars + NR expression at the end. This is done because length($0) does 

AWK  105



not count the newline character at the end of each line, so we have to add them to make 
the character count come out the same as real wc.

Even if we don’t include a filenames on the command line for AWK to input, we can tell 
AWK to read data from a file specified from within a program. Normally we don’t need 
to do this, but there are some cases where this might be handy. For example, if we wanted
to insert one file inside of another, we could use the getline function in AWK. Here’s an
example that adds a header and footer to an existing body text file:
awk '
    BEGIN {
        while (getline <"header.txt" > 0) {
            print $0
        }
    }
    {print}
    END {
        while (getline <"footer.txt" > 0) {
            print $0
        }
    } 
' < body.txt > finished_file.txt

getline is quite flexible and can be used in a variety of ways:

getline
In its most basic form, getline reads the next record from the current input stream. $0, 
NF, NR, and FNR are set.

getline var
Reads the next record from the current input stream and assigns its contents to the 
variable var. var, NR, and FNR are set.

getline <file
Reads a record from file. $0 and NF are set. It’s important to check for errors when 
reading from files. In the earlier example above, we specified a while loop as follows:
while (getline <"header.txt" > 0)

As we can see, getline is reading from the file header.txt, but what does the “> 0” 
mean? The answer is that, like most functions, getline returns a value. A positive value 
means success, zero means EOF (end of file), and a negative value means some other 
file-related problem, such as file not found has occurred. If we did not check the return 
value, we might end up with an infinite loop.

106  AWK



getline var <file
Reads the next record from file and assigns its contents to the variable var. Only var is 
set.

command | getline
Reads the next record from the output of command. $0 and NF are set. Here is an example
where we use AWK to parse the output of the date command:
awk '
    BEGIN {
        "date" | getline
        print $4
    }
'

command | getline var
Reads the next record from the output of command and assigns its contents to the variable
var. Only var is set.

String Functions
As one would expect, AWK has many functions used to manipulate strings and what’s 
more, many of them support regular expressions. This makes AWK’s string handling very
powerful.

gsub(r, s, t)
Globally replaces any substring matching regular expression r contained within the target
string t with the string s. The target string is optional. If omitted, $0 is used as the target 
string. The function returns the number of substitutions made.

index(s1, s2)
Returns the leftmost position of string s2 within string s1. If s2 does not appear within s1,
the function returns 0.

length(s)
Returns the number of characters in string s.

match(s, r)
Returns the leftmost position of a substring matching regular expression r within string s. 
Returns 0 if no match is found. This function also sets the internal variables RSTART and 
RLENGTH.

AWK  107



split(s, a, fs)
Splits string s into fields and stores each field in an element of array a. Fields are split 
according to field separator fs. For example, if we wanted to break a phone number such 
as 800-555-1212 into 3 fields separated by the “-” character, we could do this:
phone="800-555-1212"
split(phone, fields, "-")

After doing so, the array fields will contain the following elements:
fields[1] = "800"
fields[2] = "555"
fields[3] = "1212"

sprintf(fmt, exprs)
This function behaves like printf, except instead of outputting a formatted string, it 
returns a formatted string containing the list of expressions to the caller. Use this function
to assign a formatted string to a variable:
area_code = "800"
exchange = "555"
number = "1212"
phone_number = sprintf("(%s) %s-%s", area_code, exchange, number)

sub(r, s, t)
Behaves like gsub, except only the first leftmost replacement is made. Like gsub, the 
target string t is optional. If omitted, $0 is used as the target string.

substr(s, p, l)
Returns the substring contained within string s starting at position p with length l.

Arithmetic Functions
AWK has the usual set of arithmetic functions. A word of caution about math in AWK: it 
has limitations in terms of both number size and precision of floating point operations. 
This is particularly true of mawk. For tasks involving extensive calculation, gawk would 
be preferred. The gawk documentation provides a good discussion of the issues involved.

atan2(y, x)
Returns the arctangent of y/x in radians.

cos(x)
Returns the cosine of x, with x in radians.

108  AWK



exp(x)
Returns the exponential of x, that is e^x.

int(x)
Returns the integer portion of x. For example if x = 1.9, 1 is returned.

log(x)
Returns the natural logarithm of x. x must be positive.

rand()
Returns a random floating point value n such that 0 <= n < 1. This is a value between 0 
and 1 where a value of 0 is possible but not 1. In AWK, random numbers always follow 
the same sequence of values unless the seed for the random number generator is first set 
using the srand() function (see below).

sin(x)
Returns the sine of x, with x in radians.

sqrt(x)
Returns the square root of x.

srand(x)
Sets the seed for the random number generator to x. If x is omitted, then the time of day is
used as the seed. To generate a random integer in the range of 1 to n, we can use code like
this:
srand()
# Generate a random integer between 1 and 6 inclusive
dice_roll = int(6 * rand()) + 1

User Defined Functions
In addition to the built-in string and arithmetic functions, AWK supports user-defined 
functions much like the shell. The mechanism for passing parameters is different, and 
more like traditional languages such as C.

Defining a function
A typical function definition looks like this:
function name(parameter-list) {
    statements

AWK  109



    return expression
}

We use the keyword function followed by the name of the function to be defined. The 
name must be immediately followed by the opening left parenthesis of the parameter list. 
The parameter list may contain zero or more comma-separated parameters. A brace 
delimited code block follows with one or more statements. To specify what is returned by
the function, the return statement is used, followed by an expression containing the 
value to be returned. If we were to convert our previous dice rolling example into a 
function, it would look like this:
function dice_roll() {
    return int(6 * rand()) + 1
}

Further, if we wanted to generalize our function to support different possible maximum 
values, we could code this:
function rand_integer(max) {
    return int(max * rand()) + 1
}

and then change dice_roll to make use of our generalized function:
function dice_roll() {
    return rand_integer(6)
}

Passing Parameters to Functions
As we saw in the example above, we pass parameters to the function, and they are 
operated upon within the body of the function. Parameters fall into two general classes. 
First, there are the scalar variables, such as strings and numbers. Second are the arrays. 
This distinction is important in AWK because of the way that parameters are passed to 
functions. Scalar variables are passed by value, meaning that a copy of the variable is 
created and given to the function. This means that scalar variables act as local variables 
within the function and are destroyed once the function exits. Array variables, on the 
other hand, are passed by reference meaning that a pointer to the array’s starting position 
in memory is passed to the function. This means that the array is not treated as a local 
variable and that any change made to the array persists once the program exits the 
function. This concept of passed by value versus passed by reference shows up in a lot of 
programming languages so it’s important to understand it.

Local Variables
One interesting limitation of AWK is that we cannot declare local variables within the 
body of a function. There is a workaround for this problem. We can add variables to the 
parameter list. Since all scalar variables in the parameter list are passed by value, they 
will be treated as if they are local variables. This does not apply to arrays, since they are 
always passed by reference. Unlike many other languages, AWK does not enforce the 
parameter list, thus we can add parameters that are not used by the caller of the function. 

110  AWK



In most other languages, the number and type of parameters passed during a function call 
must match the parameter list specified by the function’s declaration.

By convention, additional parameters used as local variables in the function are preceded 
by additional spaces in the parameter list like so:
function my_funct(param1, param2, param3,    local1, local2)

These additional spaces have no meaning to the language, they are there for the benefit of
the human reading the code.

Let’s try some short AWK programs on some numbers. First we need some data. Here’s a
little AWK program that produces a table of random integers:
# random_table.awk - generate table of random numbers

function rand_integer(max) {
    return int(max * rand()) + 1
}

BEGIN {
    srand()
    for (i = 0; i < 100; i++) {
        for (j = 0; j < 5; j++) {
            printf("    %5d", rand_integer(99999))
        }
        printf("\n", "")
    }
}

If we store this in a file, we can run it like so:
me@linuxbox ~ $ awk -f random_table.awk > random_table.dat

And it should produce a file containing 100 rows of 5 columns of random integers.

Convert a File Into CSV Format
One of AWK’s many strengths is file format conversion. Here we will convert our neatly 
arranged columns of numbers into a CSV (comma separated values) file.
awk 'BEGIN {OFS=","} {print $1,$2,$3,$4,$5}' random_table.dat

This is a very easy conversion. All we need to do is change the output field separator 
(OFS) and then print all of the individual fields. While it is very easy to write a CSV file, 
reading one can be tricky. In some cases, applications that write CSV files (including 
many popular spreadsheet programs) will create lines like this:

word1, "word2a, word2b", word3

Notice the embedded comma in the second field. This throws the simple AWK solution 
(FS=",") out the window. Parsing this kind of file can be done (gawk, in fact has a 

AWK  111



language extension for this problem), but it’s not pretty. It is best to avoid trying to read 
this type of file.

Convert a File Into TSV Format
A frequently available alternative to the CSV file is the TSV (tab separated value) file. 
This file format uses tab charachers as the field separators:
awk 'BEGIN {OFS="\t"} {print $1,$2,$3,$4,$5}' random_table.dat

Again, writing these files is easy to do. We just set the output field separator to a tab 
character. In regards to reading, most applications that write CSV files can also write 
TSV files. Using TSV files avoids the embedded comma problem we often see when 
attempting to read CSV files.

Print the Total for Each Row
If all we need to do is some simple addition, this is easily done:
awk '
    {
        t = $1 + $2 + $3 + $4 + $5
        printf("%s = %6d\n", $0, t)
    }
' random_table.dat

Print the Total for Each Column
Adding up the column is pretty easy, too. In this example, we use a loop and array to 
maintain running totals for each of the five columns in our data file:
awk '
    {
        for (i = 1; i <= 5; i++) {
            t[i] += $i
        }
        print
    }
    END {
        print "  ==="
        for (i = 1; i <= 5; i++) {
            printf("  %7d", t[i])
        }
        printf("\n", "")
     }
' random_table.dat

Print the Minimum and Maximum Value in Column 1
awk '
    BEGIN {min = 99999}
    $1 > max {max = $1}
    $1 < min {min = $1}
    END {print "Max =", max, "Min =", min}

112  AWK



' random_table.dat

One Last Example
For our last example, we’ll create a program that processes a list of pathnames and 
extracts the extension from each file name to keep a tally of how many files have that 
extension:
# file_types.awk - sorted list of file name extensions and counts

BEGIN {FS = "."}

{types[$NF]++}

END {
    for (i in types) {
        printf("%6d %s\n", types[i], i) | "sort -nr"
    }
}

To find the 10 most popular file extensions in our home directory, we can use the 
program like this:
find ~ -name "*.*" | awk -f file_types.awk | head

Summing Up
We really have to admire what an elegant and useful tool the authors of AWK created 
during the early days of Unix. So useful that its utility continues to this day. We have 
given AWK a brief examination in this adventure. Feel free to explore further by delving 
deeper into the documentation of the various AWK implementations. Also, searching the 
web for “AWK one-liners” will reveal many useful and clever tricks possible with AWK.

Further Reading
• The nawk man page provides a good reference for the baseline version of AWK. An

online version is available at https://linux.die.net/man/1/nawk

• Many useful AWK programs are just one line long. Eric Pement has compiled an 
extensive list: http://www.pement.org/awk/awk1line.txt

• In addition to its man page, gawk has its own book titled Gawk: Effective AWK 
Programming available at: https://www.gnu.org/software/gawk/manual/

• Peteris Krumins has a nice blog post listing a variety of helpful tips for AWK users:
https://catonmat.net/ten-awk-tips-tricks-and-pitfalls

AWK  113

https://catonmat.net/ten-awk-tips-tricks-and-pitfalls
https://www.gnu.org/software/gawk/manual/
http://www.pement.org/awk/awk1line.txt
https://linux.die.net/man/1/nawk




8 Power Terminals
Over the course of our many lessons and adventures, we have learned a lot about the 
shell, and explored many of the common command line utilities found on Linux systems. 
There is, however, one program we have overlooked, and it may be among the most 
important and most frequently used of them all– our terminal emulator.

In this adventure, we are going to dig into these essential tools and look at a few of the 
different terminal programs and the many interesting things we can do with them.

A Typical Modern Terminal
Graphical desktop environments like GNOME, KDE, LXDE, XFCE, etc. all include 
terminal emulators as standard equipment. We can think of this as a safety feature 
because, if the desktop environment suffers from some lack of functionality (and they all 
do), we can still access the shell and actually get stuff done.

Modern terminal emulators are quite flexible and can be configured in many ways:

gnome-terminal preferences dialog

Size
Terminal emulators display a window that can be adjusted to any size from the sublime to
the ridiculous. Many terminals allow configuration of a default size.

Power Terminals  115



The “normal” size for a terminal is 80 columns by 24 rows. These dimensions were 
inherited from the size of common hardware terminals, which, in turn, were influenced 
by the format of IBM punch cards (80 columns by 12 rows). Some applications expect 80
by 24 to be the minimum size, and will not display properly when the size is smaller. 
Making the terminal larger, on the other hand, is preferable in most situations, 
particularly when it comes to terminal height. 80 columns is a good width for reading 
text, but having additional height provides us with more context when working at the 
command line.

Another common width is 132 columns, derived from the width of wide fan-fold 
computer paper. Though this is too wide for comfortable reading of straight text (for 
example, a man page), it’s fine for other purposes, such as viewing log files.

The 80-column default width has implications for the shell scripts and other text-based 
programs we write. We should format our printed output to fit within the limits of an 80-
character line for best effect.

Tabs
A single terminal window with the ability to contain several different shell sessions is a 
valuable feature found in most modern terminal emulators. This is accomplished through 
the use of tabs.

gnome-terminal with tabs

116  Power Terminals



Tabs are a fairly recent addition to terminal emulators, first appearing around 2003 in 
both GNOME’s gnome-terminal and KDE’s konsole.

Profiles
Another feature found in some modern terminals is multiple configuration profiles. With 
this feature, we can have separate configurations for different tasks. For example, if we 
are responsible for maintaining a remote server, we might have a separate profile for the 
terminal that we use to manage it.

Fonts, Colors, and Backgrounds
Most terminal emulators allow us to select fonts, colors, and backgrounds for our 
terminal sessions. The three most important criteria for selecting fonts, colors, and 
backgrounds are: 1. legibility, 2. legibility, and 3. legibility. Many people post screen 
shots of their Linux desktops online, and there is a great fascination with “stylish” fonts, 
faint colors, and pseudo-transparent terminal windows, but we use our terminals for very 
serious things, so we should treat our terminals very seriously, too. No one wants to make
a mistake while administering a system because they misread something on the screen. 
Choose wisely.

Past Favorites
When the first graphical environments began appearing for Unix in the mid-1980s, 
terminal emulators were among the first applications that were developed. After all, the 
GUIs of the time had very little functionality and people still needed to do their work. 
Besides, the graphical desktop allowed users to display multiple terminal windows- a 
powerful advantage at the time.

xterm
The granddaddy of all graphical terminals is xterm, the standard terminal emulator for 
the X Window System. Originally released in 1984, it’s still under active maintenance. 
Since it is a standard part of X, it is included in many Linux distributions. xterm was 
very influential, and most modern terminal programs emulate its behavior in one way or 
another.

Power Terminals  117



xterm with default configuration

In its default configuration, xterm looks rather small and pathetic, but almost everything 
about xterm is configurable. When we say “configurable,” we don’t mean there is a 
pretty “Preferences” dialog. This is Unix! Like many early X applications, it relies on an 
Xresources file for its configuration. This file can be either global 
(/etc/X11/Xresources) or local to the user (~/.Xresources). Each item in this file 
consists of an application class and a setting. If we create the file ~/.Xresources with the 
following content:
XTerm.vt100.geometry: 80x35
XTerm.vt100.faceName: Liberation Mono:size=11
XTerm.vt100.cursorBlink: true

then we get a terminal like this:

118  Power Terminals



Configured xterm

A complete list of the Xresources configuration values for xterm appears in its man page.

While xterm does not appear to have menus, it actually has 3 different ones, which are 
made visible by holding the Ctrl key and pressing a mouse button. Different menus 
appear according to which button is pressed. The scroll bar on the side of the terminal has
a behavior like ancient X applications. Hint: after enabling the scroll bar with the menu, 
use the middle mouse button to drag the slider.

Though xterm offers neither tabs nor profiles, it does have one strange extra feature: it 
can display a Tektronix 4014 graphics terminal emulator window. The Tektronix 4014 
was an early and very expensive storage tube graphics display that was popular with 
computer aided design systems in the 1970s. It’s extremely obscure today. The normal 
xterm text window is called the VT window. The name comes from the DEC VT220, a 
popular computer terminal of the same period. xterm, and most terminals today, emulate 
this terminal to a certain extent. xterm is not quite the same as the VT terminal, and it has
its own specific terminfo entry (see the tput adventure for some background on 

Power Terminals  119



terminfo). Terminals set an environment variable named TERM that is used by X and 
terminfo to identify the terminal type, and thus send it the correct control codes. To see 
the current value of the TERM variable, we can do this:

me@linuxbox ~ $ echo $TERM

Even if we are using a modern terminal, such as gnome-terminal, we will notice that the
TERM variable is often set to “xterm” or “xterm-color”. That’s how much influence xterm 
had. We still use it as the standard.

rxvt
By the standards of the time, xterm was a heavyweight program but, as time went by, 
some of its features were rarely used such as the Tektronix emulation. Around 1990, in an
attempt to create a simpler, lighter terminal emulator, Robert Nation wrote rxvt as part of
the FVWM window manager, an early desktop environment for Unix-like systems.

rxvt has a smaller feature set than xterm and emulates the DEC VT102 terminal rather 
than the more advanced VT220. rxvt sets the TERM variable to “rxvt”, which is widely 
supported. Like xterm, rxvt has menus that are displayed by holding the Ctrl key and 
pressing different mouse buttons.

rxvt is still under active maintenance, and there is a popular modern implementation 
forked from the original called urxvt ( ) by Mark Lehmann, which supports Unicode 
(multi-byte characters used to express a wider range of written languages than ASCII). 
One interesting feature in urxvt is a daemon mode that allows launching multiple 
terminal windows all sharing the same instance of the program- a potential memory 
saver.

120  Power Terminals



urxvt with default configuration

Like xterm, rxvt uses Xresources to control its configuration. The default rxvt 
configuration is very spare. Adding the following settings to our Xresources file will 
make it more palatable (urxvt shown):

URxvt.geometry: 80x35
URxvt.saveLines: 10000
URxvt.scrollBar: false
URxvt.foreground: white
URxvt.background: black
URxvt.secondaryScroll: true
URxvt.font: xft:liberation mono:size=11
URxvt.cursorBlink: true

Modern Power Terminals
Most modern graphical desktop environments include a terminal emulator program. 
Some are more feature-rich than others. Let’s look at some of the most powerful and 
popular ones.

gnome-terminal
The default terminal application for GNOME and its derivatives is gnome-terminal. 
Possibly the world’s most popular terminal app, it’s a good, full-featured program. It has 
many features we expect in modern terminals, like multiple tabs and profile support. It 
also allows many kinds of customization.

Power Terminals  121



Tabs
Busy terminal users will often find themselves working in multiple terminal sessions at 
once. It may be to perform operations on several machines at the same time, or to manage
a complex set of tasks on a single system. This problem can be addressed either by 
opening multiple terminal windows, or by having multiple tabs in a single window.

The File menu in gnome-terminal offers both choices (well, in older versions anyway). 
In newer versions, use the keyboard shortcut Ctrl-Shift-T to open a tab. Tabs can be 
rearranged with the mouse, or can be dragged out of the window to create a new window. 
With gnome-terminal, we can even drag a tab from one terminal window to another.

Keyboard Shortcuts
Since, in an ideal universe, we never lift our fingers from the keyboard, we need ways of 
controlling our terminal without resorting to a mouse. Fortunately, gnome-terminal 
offers a large set of keyboard shortcuts for common operations. Here are some of the 
most useful ones, defined by default:

Shortcut Action
Ctrl-Shift-N New Window
Ctrl-Shift-W Close Window
F11 View terminal full screen
Shift-PgUp Scroll up
Shift-PgDn Scroll down
Shift-Home Scroll to the beginning
Shift-End Scroll to the end
Ctrl-Shift-T New Tab
Ctrl-Shift-Q Close Tab
Ctrl-PgUp Next Tab
Ctrl-PgDn Previous Tab
Alt-n Where n is a number in the range of 1 to 9, go to tab n

Gnome-terminal keyboard shortcuts

Keyboard shortcuts are also user configurable.

While it is well known that Ctrl-c and Ctrl-v cannot be used in the terminal window to
perform copy and paste, Ctrl-Shift-C and Ctrl-Shift-V will work in their place with 
gnome-terminal.

Profiles
Profiles are one of the great, unsung features of many terminal programs. This may be 
because their advantages are perhaps not intuitively obvious. Profiles are particularly 
useful when we want to visually distinguish one terminal session from another. This is 
especially true when managing multiple machines. In this case, having a different 

122  Power Terminals



background color for the remote system’s session may help us avoid typing a command 
into the wrong session. We can even incorporate a default command (like ssh) into a 
profile to facilitate the connection to the remote system.

Let’s make a profile for a root shell. First, we’ll go to the File menu and select “New 
Profile…” and when the dialog appears enter the name “root” as our new profile:

gnome-terminal new profile dialog

Next, we’ll configure our new profile and choose the font and default size of the terminal 
window. Then we will choose a command for the terminal window when it is opened. To 
create a root shell, we can use the command sudo -i. We will also make sure to specify 
that the terminal should exit when the command exits.

Power Terminals  123



Setting the command in the configuration dialog

Finally, we’ll select some colors. How about white text on a dark red background? That 
should convey an appropriate sense of gravity when we use a root shell.

124  Power Terminals



Setting the colors in configuration dialog

Once we finish our configuration, we can test our shell:

Power Terminals  125



Root profile gnome-terminal

We can configure terminal profiles for any command line program we want: Midnight 
Commander, tmux, whatever.

Here is another example. We will create a simple man page viewer. With this terminal 
profile, we can have a dedicated terminal window to only display man pages. To do this, 
we first need to write a short script to prompt the user for the name of which command to
look up, and display the man page in a (nearly) endless loop:
#!/bin/bash

# man_view - simple man page viewer

while true; do
  echo -en "\nPlease enter a command name (q to quit) -> "
  read
  [[ "$REPLY" == "q" ]] && break
  [[ -n "$REPLY" ]] && { man $REPLY || sleep 3; }
  clear
done

We’ll save this file in our ~/bin directory and use it as our custom command for our 
terminal profile.

Next, we create a new terminal profile and name it “man page”. Since we are designing a 
window for man pages, we can play with the window size and color. We’ll set the 
window tall and a little narrow (for easier reading) and set the colors to green text on a 
black background for that retro terminal feeling:

126  Power Terminals



Man page gnome-terminal window

Opening Hyperlinks and Email Addresses
One of the neat tricks gnome-terminal can do is copy and/or open URLs. When it 
detects a URL in the stream of displayed text, it displays it with an underline. Right-
clicking on the link displays a menu of operations:

Power Terminals  127



gnome-terminal URL context menu

Resetting the Terminal
Sometimes, despite our best efforts, we do something dumb at the terminal, like 
attempting to display a non-text file. When this happens, the terminal emulator will 
dutifully interpret the random bytes as control codes and we’ll notice that the terminal 
screen fills with garbage and nothing works anymore. To escape this situation, we must 
reset the terminal. gnome-terminal provides a function for this located in its Terminal 
menu.

konsole
konsole, the default terminal application for the KDE desktop, has a feature set similar 
to that of gnome-terminal. This, of course, makes sense since konsole directly 
“competes” with gnome-terminal. For instance, both gnome-terminal and konsole 
support tabs and profiles in a similar fashion.

konsole does have a couple of unique features not found in gnome-terminal. konsole 
has bookmarks, and konsole can split the screen into regions allowing more than one 
view of the same terminal session to be displayed at the same time.

Bookmarks
konsole allows us to store the location of directories as bookmarks. Locations may also 
include remote locations accessible via ssh. For example, we can define a bookmark 

128  Power Terminals



such as ssh:me@remotehost, and it will attempt to connect with the remote system when
the bookmark is used.

konsole bookmarks menu

Power Terminals  129



Split View

konsole’s split view feature

konsole’s unique split view feature allows us to have two views of a single terminal 
session. This seems odd at first glance, but is useful when examining long streams of 
output. For example, if we needed to copy text from one portion of a long output stream 
to the command line at the bottom, this could be handy. Further, we can get views of 
different terminal sessions, by using using tabs in conjunction with split views, since 
while the tabs will appear in all of the split views, they can be switched independently in 
each view:

130  Power Terminals



konsole with tabs and split view

guake
gnome-terminal has spawned a couple of programs that reuse many of its internal parts 
to create different terminal applications. The first is guake, a terminal that borrows a 
design feature from a popular first-person shooter game. When running, guake normally 
hides in the background, but when the F12 key is pressed, the terminal window “rolls 
down” from the top of the screen to reveal itself. This can be handy if terminal use is 
intermittent, or if screen real estate is at a premium.

guake shares many of the configuration options with gnome-terminal, as well as the 
ability to configure what key activates it, which side of the screen it rolls from, and its 
size.

Though guake supports tabs, it does not (as of this writing) support profiles. However, 
we can approximate profiles with a little clever scripting:
#!/bin/bash

# gtab - create pseudo-profiles for guake

if [[ $1 == "" ]]; then
  guake --new-tab=. --show

Power Terminals  131



  exit
fi

case $1 in
  root) # Create a root shell tab
    guake --new-tab=. --fgcolor=\#ffffff --bgcolor=\#5e0000
    guake --show    # Switch to new fg/bg colors
    guake --rename-current-tab=root
    guake --execute-command='sudo -i; exit'
    ;;
  man) # Create a manual page viewer tab
    guake --new-tab=. --fgcolor=\#00ef00 --bgcolor=\#000000
    guake --show    # Switch to new fg/bg colors
    guake --rename-current-tab="man viewer"
    guake --execute-command='man_view; exit'
    ;;
  *)
    echo "No such tab. Try either 'root' or 'man'" >&2
    exit 1
    ;;
esac

After saving this script, we can open new tabs in guake by entering the command gtab 
followed by an optional profile, either “root” or “man” to duplicate what we did with the 
gnome-terminal profiles above. Entering gtab without an option simply opens a new 
tab in the current working directory.

As we can see, guake has a number of interesting command line options that allow us to 
program its behavior.

For KDE users, there is a similar program called yakuake.

terminator
Like guake, terminator builds on the gnome-terminal code to create a very popular 
alternative terminal. The main feature addition is split window support.

132  Power Terminals



terminator with split screens

By right-clicking in the terminator window, terminator displays its menu where we 
can see the options for splitting the current terminal either vertically or horizontally.

The terminator menu

Once split, each terminal pane can dragged and dropped. Panes can also be resized with 
either the mouse or a keyboard shortcut. Another nice feature of terminator is the 

Power Terminals  133



ability to set the focus policy to “focus follows mouse” so that we can change the active 
pane by simply hovering the mouse over the desired pane without have to perform an 
extra click to make the pane active.

The preferences dialog supports many of the same configuration features as that of 
gnome-terminal, including profiles with custom commands:

The terminator preferences dialog

A good way to use terminator is to expand its window to full screen and then split it 
into multiple panes:

134  Power Terminals



Full screen terminator window with multiple panes

We can even automate this by going into Preferences/Layouts and storing our full screen 
layout (let’s call it “2x2”) then, by invoking terminator this way:
terminator --maximise --layout=2x2

to get our layout instantly.

Terminals for Other Platforms

Android
While we might not think of an Android phone or tablet as a Linux computer, it actually 
is, and we can get terminal apps for it which are useful for administering remote systems.

Connectbot
Connectbot is a secure shell client for Android. With it, we can log into any system 
running an SSH server. To the remote system, Connectbot looks like a terminal using the 
GNU Screen terminal type.

One problem with using a terminal emulator on Android is the limitations of the native 
Google keyboard. It does not have all the keys required to make full use of a terminal 
session. Fortunately, there are alternate keyboards that we can use on Android. A really 
good one is Hacker’s Keyboard by Klaus Weidner. It supports all the normal keys, Ctrl, 
Alt, F1-F10, arrows, PgUp, PgDn, etc. Very handy when working with vi on a phone.

Power Terminals  135



136  Power Terminals



Connectbot with Hacker’s Keyboard on Android

Termux
The Termux app for Android is unexpectedly amazing. It goes beyond being merely an 
SSH client; it provides a full shell environment on Android without having to root the 
device.

After installation, there is a minimal base system with a shell (bash) and many of the 
most common utilities. Initially, these utilities are the ones built into busybox (a compact 
set of utilities joined into a single program that is often used in embedded systems to save
space), but the apt package management program (like on Debian/Ubuntu) is provided to
allow installation of a wide variety of Linux programs.

Power Terminals  137



138  Power Terminals



Termux displaying builtin shell commands

We can have dot files (like .bashrc) and even write shell scripts and compile and debug 
programs in Termux. Pretty neat.

When executing ssh, Termux looks like an “xterm-256color” terminal to remote systems.

Chrome/Chrome OS
Google makes a decent SSH client for Chrome and Chrome OS (which is Linux, too, 
after all) that allows logging on to remote systems. Called Secure Shell, it uses hterm 
(HTML Terminal, a terminal emulator written in JavaScript) combined with an SSH 
client. To remote systems, it looks like a “xterm-256color” terminal. It works pretty well, 
but lacks some features that advanced SSH users may need.

Secure Shell is available at the Chrome Web Store.

Secure Shell running on Chrome OS

Summing Up
Given that our terminal emulators are among our most vital tools, they should command 
more of our attention. There are many different terminal programs with potentially 
interesting and helpful features, many of which, most users rarely, if ever, use. This is a 
shame since many of these features are truly useful to the busy command line user. We 
have looked at a few of the ways these features can be applied to our daily routine, but 
there are certainly many more.

Power Terminals  139



Further Reading
• “The Grumpy Editor’s guide to terminal emulators” by Jonathan Corbet: 

https://lwn.net/Articles/88161/

xterm:
• xterm on Wikipedia: https://en.wikipedia.org/wiki/Xterm

• Homepage for the current maintainer of xterm, Thomas Dickey: https://invisible-
island.net/xterm/

Tektronix 4014:
• Tektronix 4014 on Wikipedia: https://en.wikipedia.org/wiki/Tektronix_4010

• Some background on the 4014 at Chilton Computing: http://www.chilton-
computing.org.uk/acd/icf/terminals/p005.htm

rxvt:
• Home page for rxvt: http://rxvt.sourceforge.net/

urxvt (rxvt-Unicode):
• Home page for the rxvt-Unicode project: http://software.schmorp.de/pkg/rxvt-

unicode.html

gnome-terminal:
• Help pages for gnome-terminal: 

https://help.gnome.org/users/gnome-terminal/stable/

konsole:
• The Konsole Manual at the KDE Project: 

https://docs.kde.org/stable5/en/applications/konsole/index.html

guake:
• The home page for the guake project: http://guake-project.org/

• The Arch Wiki entry for guake (contains a lot of useful information but some is 
Arch Linux specific): https://wiki.archlinux.org/index.php/Guake

140  Power Terminals

https://wiki.archlinux.org/index.php/Guake
http://guake-project.org/
https://docs.kde.org/stable5/en/applications/konsole/index.html
https://help.gnome.org/users/gnome-terminal/stable/
http://software.schmorp.de/pkg/rxvt-unicode.html
http://software.schmorp.de/pkg/rxvt-unicode.html
http://rxvt.sourceforge.net/
http://www.chilton-computing.org.uk/acd/icf/terminals/p005.htm
http://www.chilton-computing.org.uk/acd/icf/terminals/p005.htm
https://en.wikipedia.org/wiki/Tektronix_4010
https://invisible-island.net/xterm/
https://invisible-island.net/xterm/
https://en.wikipedia.org/wiki/Xterm
https://lwn.net/Articles/88161/


terminator:
• The home page for the terminator project: 

https://gnometerminator.blogspot.com/p/introduction.html

Connectbot:
• Connectbot at the Google Play Store: https://play.google.com/store/apps/details?

id=org.connectbot&hl=en

Hacker’s Keyboard:
• Hacker’s Keyboard at the Google Play Store: 

https://play.google.com/store/apps/details?
id=org.pocketworkstation.pckeyboard&hl=en

Termux:
• Termux at the Google Play Store: https://play.google.com/store/apps/details?

id=com.termux&hl=en

Secure Shell
• Secure Shell at the Chrome Web Store: 

https://chrome.google.com/webstore/detail/secure-shell-app/pnhechapfaindjhompb
nflcldabbghjo

• Secure Shell FAQ: 
https://chromium.googlesource.com/apps/libapps/+/master/nassh/doc/FAQ.md

Power Terminals  141

https://chromium.googlesource.com/apps/libapps/+/master/nassh/doc/FAQ.md
https://chrome.google.com/webstore/detail/secure-shell-app/pnhechapfaindjhompbnflcldabbghjo
https://chrome.google.com/webstore/detail/secure-shell-app/pnhechapfaindjhompbnflcldabbghjo
https://play.google.com/store/apps/details?id=com.termux&hl=en
https://play.google.com/store/apps/details?id=com.termux&hl=en
https://play.google.com/store/apps/details?id=org.pocketworkstation.pckeyboard&hl=en
https://play.google.com/store/apps/details?id=org.pocketworkstation.pckeyboard&hl=en
https://play.google.com/store/apps/details?id=org.connectbot&hl=en
https://play.google.com/store/apps/details?id=org.connectbot&hl=en
https://gnometerminator.blogspot.com/p/introduction.html




9 Other Shells
While we have spent a great deal of time learning the bash shell, it’s not the only “game 
in town.” Unix has had several popular shells and almost all are available for Linux, too. 
In this adventure, we will look at some of these, mostly for their historical significance. 
With a couple of possible exceptions, there is very little reason to switch, as bash is a 
pretty good shell. Some of these alternate shells are still popular on other Unix and Unix-
like systems, but are rarely used in Linux except when compatibility with other systems 
is required.

The Evolution of Shells
The first Unix shell was developed in 1971 by Ken Thompson who, along with Dennis 
Richie, created Unix at AT&T Bell Telephone Laboratories. The Thompson shell 
introduced many of the core ideas that we see in shells today. These include I/O 
redirection, pipelines, and the ability to place processes in the background. This early 
shell was intended only for interactive use, not for use as a programming language.

The Thompson shell was followed in 1975 by the Mashey shell, written by John Mashey. 
This shell extended the Thompson shell to support shell scripting by including variables, 
a built-in if/then/else, and other rudimentary flow control constructs.

At this point we come to a big split in shell design philosophies. In 1978 Steve Bourne 
created the Bourne shell. The following year, Bill Joy (the original author of vi) released 
the C shell.

The Bourne shell added a lot of features that greatly improved shell scripting. These 
included flow control structures, better variables, command substitutions, and here 
scripts. The Bourne shell contains much of the functionality that we see in the bash shell 
today.

On the other hand, the C shell was designed to improve interactive use by adding 
command history and job control. The C shell, as its name would imply, uses a syntax 
that mimics the C programming language. C language programmers abounded in the 
Unix community, so many preferred this style. Ironically, the C shell is not very good at 
scripting. For example, it lacks user defined functions and the shell’s parser (the portion 
of the shell that reads and figures out what the script is saying) suffers from serious 
limitations.

In 1983, in an effort to improve the Bourne shell, David Korn released the Korn shell. 
Command history, job control, associative arrays, vi and Emacs style command editing 
are among the features that were added. In the 1993 release (known as ksh93), floating 
point arithmetic was added. The Korn shell was good for both interactive use and 

Other Shells  143



scripting. Unfortunately, the Korn shell was proprietary software distributed under license
from AT&T. This changed in 2000 when it was released under an open source license.

When POSIX standardized the shell for use on Unix systems, it specified a subset of the 
Korn shell that would be largely compatible with the earlier Bourne shell. As a result, 
most Bourne-type shells now conform to the POSIX standard, but include various 
extensions.

Partially in response to the proprietary licensing of the Korn shell, the GNU project 
developed bash, which includes many Korn shell features. The first version, written by 
Brian Fox was released in 1989 and is today maintained by Chet Ramey. Bash is best 
known as the default shell in most Linux distributions. It is also the default shell in 
versions of macOS; however, due to Apple’s obsession with secrecy and lock-down, they 
refuse to update bash to version 4 because of provisions in the GNU GPLv3.

Since the development of bash, one new shell has emerged that is gaining traction among
Linux and MacOS users. It’s the Z shell (zsh). Sometimes described as “the Emacs of 
shells” because of its large feature set, zsh adds a number of features to enhance 
interactive use.

Modern Implementations
Modern Linux users have a variety of shell programs from which to choose. Of course, 
the overwhelming favorite is bash, since it is the default shell supplied with most Linux 
distributions. That said, users migrating from other Unix and Unix-like systems may be 
more comfortable with other shells. There is also the issue of portability. If a script is 
required to run on multiple Unix-like systems, then care must be taken to either: 1) make 
sure that all the systems are running the same shell program, or 2) write a script that 
conforms to the POSIX standard, since most modern Bourne shell derivatives are POSIX 
complaint.

A Reference Script
In order to compare the various shell dialects, we’ll start with this bash script taken from 
Chapter 33 of TLCL:
#!/bin/bash

# longest-word : find longest string in a file

for i; do
  if [[ -r "$i" ]]; then
    max_word=
    max_len=0
    for j in $(strings "$i"); do
      len=${#j}
      if (( len > max_len )); then
        max_len=$len

144  Other Shells



        max_word=$j
      fi
    done
    echo "$i: '$max_word' ($max_len characters)"
  fi
done

dash - Debian Almquist Shell
The Debian Almquist shell is Debian’s adaptation of the Almquist shell (ash) originally 
written in the 1980s by Kenneth Almquist. The ash shell is the default shell on several of 
the BSD flavors of Unix. dash, like its ancestor ash, has the advantage of being small 
and fast; however, it achieves this by forgoing conveniences intended for interactive use 
such as command history and editing. It also lacks some builtin commands, relying 
instead on external programs. Its main use is the execution of shell scripts, particularly 
during system startup. On Debian and related distributions such as Ubuntu, dash is linked
to /bin/sh, the shell used to run the system initialization scripts.

dash is a POSIX compliant shell, so it supports Bourne shell syntax with a few additional
Korn shell features:
#!/bin/dash

# longest-word.dash : find longest string in a file

for i; do
  if [ -r "$i" ]; then
    max_word=
    max_len=0
    for j in $(strings "$i"); do
      len=${#j}
      if [ $len -gt $max_len ]; then
        max_len=$len
        max_word=$j
      fi
    done
    echo "$i: '$max_word' ($max_len characters)"
  fi
done

Here we see that the dash script is mostly the same as the bash reference script, but we 
do see some differences. For one thing, dash does not support the ‘[[’ syntax for 
conditional tests; it uses the older Bourne shell syntax. The POSIX specification is also 
missing the ((expression)) syntax for arithmetic expansion, nor does it support brace 
expansion. dash and the POSIX specification do support the $(cmd) syntax for command 
substitution in addition to the older `cmd` syntax.

tcsh - TENEX C Shell
The tcsh program was developed in the early 1980s by Ken Greer as an enhanced 
replacement for the original csh program. The name TENEX comes from the operating 
system of the same name, which was influential in the design of the interactive features in

Other Shells  145



tcsh. Compared to csh, tcsh added additional command history features, Emacs and vi-
style command line editing, spelling correction, and other improvements intended for 
interactive use. Early versions of Apple’s OS X used tcsh as the default shell. It is still 
the default root shell on several BSD distributions.

tcsh, like the C shell, is not POSIX compliant as we can see here:

#!/usr/bin/tcsh

# longest-word.tcsh : find longest string in a file

foreach i ($argv)
  set max_word=""
  set max_len=0
  foreach j (`strings $i`)
    set len=$%j
    if ($len > $max_len) then
      set max_word=$j
      set max_len=$len
    endif
  end
  echo "$1 : $max_word ($max_len characters)"
end

Our tcsh version of the script demonstrates many differences from Bourne style syntax. 
In C shell, most of the flow control statements are different. We see for example, that the 
outer loop starts with a foreach statement incrementing the variable i with succeeding 
values from the word list $argv. argv, taken from the C programming language, refers to
an array containing the list of command line arguments.

While this simple script works, tcsh is not very capable when things get more 
complicated. It has two major weaknesses. First, it does not support user-defined 
functions. As a workaround, separate scripts can be called from the main script to carry 
out the individual functions. Second, many complex constructs easily accomplished with 
the POSIX shell, such as:
{ if [[ "$a" ]]; then
    grep "string1"
  else
    grep "string2"
  fi
} < file.txt

are not possible because the C shell parser cannot handle redirection with flow control 
statements. The parser also makes quoting very troublesome.

ksh - Korn Shell
The Korn shell comes in several different flavors. Basically, there are two groups, ksh88 
and ksh93, reflecting the year of their release. There is a public domain version of ksh88 
called pdksh, and more official versions of both ksh88 and ksh93. All three are available 
for Linux. ksh93 would be the preferred version for most users, as it is the version found 

146  Other Shells



on most modern commercial Unix systems. During installation is it often symlinked to 
ksh.
#!/usr/bin/ksh

# longest-word.ksh : find longest string in a file

for i; do
  if [[ -r "$i" ]]; then
    max_word=
    max_len=0
    for j in $(strings "$i"); do
      len=${#j}
      if (( len > max_len )); then
        max_len=$len
        max_word=$j
      fi
    done
    print "$i: '$max_word' ($max_len characters)"
  fi
done

As we can see in this example, ksh syntax is very close to bash. The one visible 
difference is the print command used in place of echo. Korn shell has echo too, but 
print is the preferred Korn shell command for outputting text. Another subtle difference 
is the way that pipelines work in ksh. As we learned in Chapter 28 of TLCL, a construct 
such as:
#!/bin/bash
str=""
echo "foo" | read str
echo $str

always produces an empty result because, in bash pipelines, each command in a pipeline 
is executed in a subshell, so its data is destroyed when the subshell exits. In this example, 
the final command (read) is in a subshell, and thus str remains empty in the parent 
process.

In ksh, the internal organization of pipelines is different. When we do this in ksh:

#!/usr/bin/ksh
str=""
echo "foo" | read str
echo $str

The output is “foo” because in the ksh pipeline, the echo is in the subshell rather than the
read.

zsh - Z Shell
At first glance, the Z shell does not differ very much from bash when it comes to 
scripting:
#!/bin/zsh

# longest-word.zsh : find longest string in a file

Other Shells  147



for i; do
  if [[ -r "$i" ]]; then
    max_word=
    max_len=0
    for j in $(strings "$i"); do
      len=${#j}
      if (( len > max_len )); then
        max_len=$len
        max_word=$j
      fi
    done
    print "$i: '$max_word' ($max_len characters)"
  fi
done

It runs scripts the same way that bash does. This is to be expected, as zsh is intended to 
be a drop-in replacement for bash in most cases. A couple of things to note however. 
First, zsh handles pipelines like the Korn shell does; the last command in a pipeline is 
executed in the current shell. Second, in zsh, the first element of an array is index 1, not 0
as it in bash and ksh.

Where zsh does differ significantly is in the number of bells and whistles it provides for 
interactive use (some of which can be applied to scripting as well). Let’s take a look at a 
few:

Tab Completion
Many kinds of tab completion are supported by zsh. These include command names, 
command options, and arguments.

When using the cd command, repeatedly pressing the tab key first displays a list of the 
available directories, then begins to cycle through them. For example:
me@linuxbox ~ $ cd <tab>

me@linuxbox ~ $ cd <tab>
Desktop/    Documents/  Downloads/  Music/  Pictures/   Public/
Templates/  Videos/

me@linuxbox ~ $ cd Desktop/<tab>
Desktop/    Documents/  Downloads/  Music/  Pictures/   Public/
Templates/  Videos/

me@linuxbox ~ $ cd Documents/
Desktop/    Documents/  Downloads/  Music/  Pictures/   Public/
Templates/  Videos/

zsh can be configured to display a highlighted selector on the list of directories, and we 
can use the arrow keys to directly move the highlight to the desired entry in the list to 
select it.

We can also switch directories by replacing one part of a path name with another:
me@linuxbox ~ $ cd /usr/local/share

148  Other Shells



me@linuxbox share $ cd share bin
me@linuxbox bin $ pwd
/usr/local/bin

Pathnames can be abbreviated as long as they are unambiguous. If we type:
me@linuxbox ~ $ ls /u/l/share<tab>

zsh will expand it into:
me@linuxbox ~ $ ls /usr/local/share/

That can save a lot of typing!

Help for options and arguments is provided for many commands. To invoke this feature, 
we type the command and the leading dash for an option, then hit the tab key:
me@linuxbox ~ $ rm -<tab>
--force             -f      -- ignore nonexistent files, never prompt
--help                      -- display help message and exit
-i                          -- prompt before every removal
-I                          -- prompt when removing many files
--interactive               -- prompt under given condition
                               (defaulting to always)
--no-preserve-root          -- do not treat / specially
--one-file-system           -- stay within file systems of files given
                               as arguments
--preserve-root             -- do not remove / (default)
--recursive         -R  -r  -- remove directories and their contents
                               recursively
--verbose           -v      -- explain what is being done
--version                   -- output version information and exit

This displays a list of options for the command, and like the cd command, repeatedly 
pressing tab causes zsh to cycle through the available options.

Pathname Expansion
The Z shell provides several powerful additions to pathname expansion that can save 
steps when specifying files as command arguments.

We can use "**" to cause recursive expansion. For example, if we wanted to list every 
file name ending with .txt in our home directory and its subdirectories, we would have 
to do this in bash:

me@linuxbox ~ $ find . -name "*.txt" | sort

In zsh, we could do this:
me@linuxbox ~ $ ls **/*.txt

and get the same result.

And if that weren’t cool enough, we can also add qualifiers to the wildcard to perform 
many of the same tests as the find command. For example:

me@linuxbox ~ $ **/*.txt(@)

Other Shells  149



will only display the files whose names end in .txt and are symbolic links.

There are many supported qualifiers and they may be combined to perform very fine 
grained file selection. Here are some examples:

Qualifier Description Example
. Regular files ls *.txt(.)
/ Directories ls *.txt(/)
@ Symbolic links ls *.txt(@)
* Executable files ls *(*)
F Non-empty (“full”) directories ls *(F)
/^F Empty directories ls *(/^F)
mn Modified exactly n days ago ls *(m5)
m-n Modified less than n days ago ls *(m-5)
m+n Modified more than n days ago ls *(m+5)
L0 Empty (zero length) file ls *(L0)
LM+n File larger than n megabytes ls *(LM+5)
LK-n File smaller than n kilobytes ls *(LK-100)

Z shell pathname expansions

Global Aliases
Z shell provides more powerful aliases. With zsh we can define an alias in the usual way,
such as:
me@linuxbox ~ $ alias vi='/usr/bin/vim'

and it will behave just as it would in bash. But we can also define a global alias that can 
be used at any position on the command line, not just at the beginning. For example, we 
can define a commonly used file name as an alias:
me@linuxbox ~ $ alias -g LOG='/var/log/syslog'

and then use it anywhere on a command line:
me@linuxbox ~ $ less LOG

The use of an uppercase alias name is not a requirement, it’s just a custom to make its use
easier to see. We can also use global aliases to define common redirections:
me@linuxbox ~ $ alias -g L='| less"

or
me@linuxbox ~ $ alias -g W='| wc -l'

Then we can do things like this:
me@linuxbox ~ $ cat LOG W

to display the number of lines in /var/log/syslog.

150  Other Shells



Suffix Aliases
What’s more, we can define aliases to act like an “open with…” by defining a suffix alias.
For example, we can define an alias that says all files that end with “.txt” should be 
viewed with less:
me@linuxbox ~ $ alias -s txt='less'

Then we can just type the name of a text file, and it will be opened by the application 
specified by the alias:
me@linuxbox ~ $ dir-list.txt

How cool is that?

Improved History Search
zsh adds a neat trick to history searching. In bash (and zsh too) we can perform a reverse
incremental history search by typing Ctrl-r, and each subsequent keystroke will refine 
the search. zsh goes one better by allowing us to simply type a few letters of the desired 
search string on the command line and then press up-arrow. It moves back through the 
history to find the first match, and each time we press the up-arrow, the next match is 
displayed.

Environment Variable Editing
zsh provides a shell builtin called vared for editing shell variables. For example, if we 
wanted to make a quick change to our PATH variable we can do this:
me@linuxbox ~ $ vared PATH

and the contents of the PATH variable appear in the command editor, so we can make a 
change and press Enter and the change takes effect.

Frameworks
We have only touched on a few of the features available in zsh. It has a lot. But with a 
large feature set comes complexity, and configuring zsh to take advantage of its full 
potential can be daunting. Heck, its man page is a only a table of contents to the other 
10+ man pages that cover various topics. Fortunately, communities have sprung up to 
provide frameworks that supply ready-to-use configurations and add-ons for zsh. By far, 
the most popular of these is Oh-My-Zsh, a project led by Robby Russell.

Oh-My-Zsh is a large collection of configuration files, plugins, aliases, and themes. It 
offers support for tailoring zsh for many types of common tasks, particularly software 
development and system administration.

Other Shells  151



Changing to Another Shell
Now that we have learned a little about the different shells available for Linux, how can 
we experiment with them? First, we can simply enter the name of the shell from our bash
prompt. This will launch the second shell as a child process of bash:
me@linuxbox ~ $ tcsh
%

Here we have launched tcsh from the bash prompt and are presented with the default 
tcsh prompt, a percent sign. Since we have not yet created any startup files for the new 
shell, we get a very bare-bones environment. Each shell has its own configuration file(s) 
for interactive use just as bash has the .bashrc file to configure its interactive sessions.

Here is a table that lists the configuration files for each of the shells when used as an 
interactive (i.e., not a login) shell:

Shell Configuration File(s)
dash User-defined by setting the ENV variable in ~/.profile
bash ~/.bashrc
ksh ~/.kshrc
tcsh ~/.tchrc
zsh ~/.zshrc
Interactive shell configuration files

We’ll need to consult the respective shell’s man page (always a fun exercise!) to see the 
complete list of shell features. Most shells also include additional documentation and 
example configuration files in the /usr/share/doc directory.

To exit our temporary shell, we simply enter the exit command:

% exit
me@linuxbox ~ $

Once we are done with our experimentation and configuration, we can change our default
shell from bash to our new shell by using the chsh command. For example, to change 
from bash to zsh, we could do this:
me@linuxbox ~ $ chsh
password:
Changing the login shell for me
Enter the new value, or press ENTER for the default
   Login Shell [/bin/bash]: /usr/bin/zsh

~ 23:30:40
$

We are prompted for our password and then prompted for the name of the new shell 
whose name must appear in the /etc/shells file. This is a safety precaution to prevent 
an invalid name from being specified and thus preventing us from logging in again. That 
would be bad.

152  Other Shells



Summing Up
Because of the growing popularity of Linux among Unix-like operating systems, bash 
has become the world’s predominant shell program. It has many of the best features of 
earlier shells and a few tricks of its own. However, if light weight and quick script 
execution is needed (for example, in embedded systems), dash is a good choice. 
Likewise, if working with other Unix systems is required, ksh or tcsh will provide the 
necessary compatibility. For the adventuresome among us, the advanced interactive 
features of zsh can enhance our day-to-day shell experience.

Further Reading
Shells and their history:

• A history of Unix shells from IBM Developer Works: 
https://developer.ibm.com/tutorials/l-linux-shells/

C shell:

• A comparison of bash and tcsh syntax by Joe Linoff: http://joelinoff.com/blog/?
page_id=235

• Tom Christiansen’s famous “Csh Programming Considered Harmful” explains the 
many ways that csh bugs out when scripting: 
https://www-uxsup.csx.cam.ac.uk/misc/csh.html

• And on a related note, here are the “Top Ten Reasons not to use the C shell” by 
Bruce Barnett: https://www.grymoire.com/unix/CshTop10.txt

Korn shell:

• Korn shell documentation: http://www.kornshell.com/doc/

• The on-line version of “Learning the Korn Shell” from O’Reilly: 
http://web.deu.edu.tr/doc/oreily/unix/ksh/index.htm

Z shell:

• Brendon Rapp’s slide presentation on “Why zsh Is Cooler Than Your Shell”: 
https://www.slideshare.net/jaguardesignstudio/why-zsh-is-cooler-than-your-shell-
16194692

• Joe Wright’s list of favorite zsh features: https://code.joejag.com/2014/why-
zsh.html

• David Fendrich’s “No, Really. Use Zsh.”: http://fendrich.se/blog/2012/09/28/no/

Other Shells  153

http://fendrich.se/blog/2012/09/28/no/
https://code.joejag.com/2014/why-zsh.html
https://code.joejag.com/2014/why-zsh.html
https://www.slideshare.net/jaguardesignstudio/why-zsh-is-cooler-than-your-shell-16194692
https://www.slideshare.net/jaguardesignstudio/why-zsh-is-cooler-than-your-shell-16194692
http://web.deu.edu.tr/doc/oreily/unix/ksh/index.htm
http://www.kornshell.com/doc/
https://www.grymoire.com/unix/CshTop10.txt
https://www-uxsup.csx.cam.ac.uk/misc/csh.html
http://joelinoff.com/blog/?page_id=235
http://joelinoff.com/blog/?page_id=235
https://developer.ibm.com/tutorials/l-linux-shells/


• Nacho Caballero’s “Master Your Z Shell with These Outrageously Useful Tips”: 
http://reasoniamhere.com/2014/01/11/outrageously-useful-tips-to-master-your-z-
shell/

• Home page for Oh-My-Zsh: https://ohmyz.sh/

154  Other Shells

https://ohmyz.sh/
http://reasoniamhere.com/2014/01/11/outrageously-useful-tips-to-master-your-z-shell/
http://reasoniamhere.com/2014/01/11/outrageously-useful-tips-to-master-your-z-shell/


10 Vim, with Vigor
TLCL Chapter 12 taught us the basic skills necessary to use the vim text editor. However,
we barely scratched the surface of its capabilities. Vim is a very powerful program. In 
fact, it’s safe to say that vim can do anything. It’s just a question of figuring out how. In 
this adventure, we will acquire an intermediate level of skill in this popular tool. In 
particular, we will look at ways to improve our productivity writing shell programs, 
configuration files, and documentation. Even better, after we get the hang of some of 
these additional features, using vim is actually fun.

In this adventure, we will look at some of the features that make vim so popular among 
developers and administrators. The community supporting vim is large and vigorous. 
Because vim is extremely rich in features and scriptable, there are many plugins and add-
ons available. However, we are going to restrict ourselves to stock vim and the plugins 
that normally ship with it.

A note about nomenclature: in TLCL we used the terms “command”, “insert”, and “ex” to
identify the three primary modes of vim. We did this to match the traditional modes of 
vim’s ancestor, vi. Since this is an all-vim adventure, we will switch to the names used in 
the vim documentation which are normal, insert, and command.

Let’s Get Started
First, we need to be sure we are running the full version of vim. Many distributions only 
ship with an abbreviated version. To get the full version, install the “vim” package if it’s 
not already installed. This is also be a good time to add an alias to the .bashrc file to 
make “vi” run vim (some distributions symbolically link ‘vi’ to vim, so this step might 
not be needed).
alias vi='vim'

Next, let’s create a minimal .vimrc, its main configuration file.
[me@linuxbox ~]$ vi ~/.vimrc

Edit the file so it contains these two lines:
set nocompatible
filetype plugin on

This will ensure that vim is not restricted to the vi feature set, and load a standard plugin 
that lets vim recognize different file types. After inserting the two lines of text, return to 
normal mode and (just for fun) type lowercase ‘m’ followed by uppercase ‘V’.
mV

Nothing will appear to happen, and that’s OK. We’ll come back to that later. Save the file 
and exit vim.
:wq

Vim, with Vigor  155



Getting Help
Vim has an extensive built-in help system. If we start vim:
[me@linuxbox ~]$ vi

and enter the command:
:help

It will appear at the top of the display.

Vim help window

Though help is extensive and very useful, it immediately presents a problem because it 
creates a split in the display. This is a rather advanced feature that needs some 
explanation.

Vim can divide the display into multiple panes, which in vim parlance are called 
windows. These are very useful when working with multiple files and other vim features 
such as help. When the display is divided this way, we can toggle between the windows 
by typing Ctrl-w twice. We can manipulate vim windows with the following commands:

:split          Create a new window
Ctrl-w Ctrl-w   Toogle between windows
Ctrl-w _        Enlarge the active window
Ctrl-w =        Make windows the same size
:close          Close active window
:only           Close all other windows

156  Vim, with Vigor



When working with files, it’s important to note that “closing” a window (with either :q or
:close) does not remove the buffer containing the window’s content; we can recall it at 
any time. However, when we close the final window, vim terminates.

To exit help, make sure the cursor is in the help window and enter the quit command.
:q

But enough about windows, let’s get back to help. If we scroll around the initial help file, 
we see it is a hypertext document full of links to various topics and it begins with the 
commands we need to navigate the help system. This is all well and good, but it’s not the 
most interesting way to use it.

The best way is to type :h followed by the topic we are interested in. The fact we don’t 
have to type out “:help” reveals that most vim commands can be abbreviated. This saves 
a lot of work. In general, commands can be shortened to their smallest non-ambiguous 
form. Frequently used commands, like help, are often shortened to a single character but 
the system of abbreviations isn’t predictable, so we have to use help to find them. For the 
remainder of this adventure, we will try to use the shortest available form.

There is an important table near the beginning of the initial help file:
    WHAT                  PREPEND    EXAMPLE
Normal mode command      (nothing)   :help x
Visual mode command         v_       :help v_u
Insert mode command         i_       :help i_<Esc>
Command-line command        :        :help :quit
Command-line editing        c_       :help c_<Del>
Vim command argument        -        :help -r
Option                      '        :help 'textwidth'

Search for help:  Type ":help word", then hit CTRL-D to see
                  matching help entries for "word".

This table describes how we should ask for help in particular contexts. We’re familiar 
with the normal mode command ‘i’ which invokes insert mode. In the case of such a 
normal mode command, we simply type:
:h i

to display its help page. For command mode commands, we precede the command with a
‘:’, for example:
:h :q

gets help with the :quit command.

There are other contexts for modes we have yet to cover. We’ll get to those in a little bit.

As we go along, feel free to use help to learn more about the commands we discuss. As 
this adventure goes on, the text will include suggested help topics to explore.

Vim, with Vigor  157



Oh, and while we’re on the subject of command mode, now is a good time to point out 
that command mode has command line history similar to the shell. After typing ‘:’ we can
use the up and down arrows to scroll through past commands.

Help topics: :split :close :only ^w

Starting a Script
In order to demonstrate features in vim, we’re going to write a shell script. What it does is
not important, in fact, it won’t do anything at all except to show how we can edit scripts. 
To begin, let’s start vim with the name of an non-existent script file:
[me@linuxbox ~]$ vi fooscript

and we will get our familiar “new file” window:

New file

Setting the Filetype
At this point vim has no idea what kind of file we are creating. If we had named the file 
fooscript.sh the filetype plugin would have determined that we were editing a shell 
script. We can verify this by asking vim what the current filetype is:
:set ft?

When we use the set command this way, it displays the current value of an option– in 
this case the ft (short for filetype) option. It should respond with the following 
indicating that the ft option is unset:

158  Vim, with Vigor



filetype=

For the curious, we can ask for help like this to get more information:
:h :set
:h 'ft'

To see all the current option settings, we can do this and the entire list will appear:.
:set

Since we want our new file to be treated as a shell script, we can set the filetype 
manually:
:set ft=sh

Next, let’s enter insert mode and type the first couple of lines in our script:
#!/bin/bash

# Script to test editing with vim 

Exit insert mode by pressing the Esc key and save the file:
:w

Now that our file contains the shebang on the first line, the filetype plugin will recognize 
the file as a shell script whenever it is loaded.

Using the Shell
One thing we can do with filetypes is create a configuration file for each of the supported 
types. Normally, these are placed in the ~/.vim/ftplugin directory. To do this, we need 
to create the directory.

We don’t have leave vim to do this; we can launch a shell from within vim. This is easily 
done by entering the command:
:sh

After doing this, a shell prompt will appear and we can enter our shell command:
[me@linuxbox ~]$ mkdir -p ~/.vim/ftplugin

When we’re done with the shell, we return to vim by exiting the shell:
[me@linuxbox ~]$ exit

Now that we have a place for our configuration file to live, let’s create it. We’ll open a 
new file:
:e ~/.vim/ftplugin/sh.vim

The filename sh.vim is required.

Help topics: :sh

Vim, with Vigor  159



Buffers
Before we start editing our new file, let’s look at what vim is doing. Each file that we edit
is stored in a buffer. We can look the current list of buffers this way:
:ls

This will display the list. There are several ways that we can switch buffers. The first way
is to cycle between them:
:bn

This command (short for :bnext) cycles through the buffer list, wrapping around at the 
end. Likewise, there is a :bp (:bprevious) command which cycles through the buffer list
backwards. We can also select a buffer by number:
:b 2

We can even refer to a buffer by using a portion of the file name:
:b fooscript

Let’s cycle back to our new buffer and add this line to our configuration file:
setlocal number

This will turn on line numbering each time we load a shell script. Notice that we use the 
setlocal command rather than set. This is because set will apply an option globally, 
whereas the setlocal command only applies the option to the current buffer. This will 
prevent settings conflicts when we edit multiple files of different types.

We can also control syntax highlighting while we’re here. We can turn it on with:
syntax on

Or turn it off with:
syntax off

We’ll save this file now, but before we do that, let’s type mS (lowercase m uppercase S), 
similar to what we did when we saved our initial .vimrc.

Help topics: :ls :buffers :bnext :bprevious :setlocal 'number' :syntax

Tabs
Before we leave the subject of buffers, let’s take a look a possible way of using them. We 
have already discussed splits and windows, but recent versions of vim include a useful 
alternative called tabs. As the name suggests, this feature allows each buffer to appear in 
its own tab.

To create a new tab, we type the following command:
:tabnew

160  Vim, with Vigor



This will open a new tab. Since we haven’t associated the tab with a buffer yet, the tab 
will be labeled “[No Name]”.

New tab

While we are in the newly created tab, we can switch to one of the existing buffers as 
before by typing:
:bn

Vim, with Vigor  161



Displaying a buffer in a tab

We can open files in tabs, too. It works much like the :e command. To open a file in a 
tab, we type :tabe followed by the name of the file.

Switching tabs is easy. To cycle through the tabs forward, we type gt. To cycle 
backwards, we type gT. If mouse support is enabled, tabs can be selected by clicking on 
them and new tabs can be opened by double clicking on the tab bar at the top of the 
screen.

It’s also possible to start vim with multiple files loaded in tabs by adding the -p option to 
the command line. For example:
[me@linuxbox ~]$ vim -p file1 file2

To close tabs, we use :q command just like closing a vim window. When only one tab 
remains, vim leaves tabbed mode and the display returns to its usual state.

There are a lot of tab-related features in vim. See the help topic for full details.

Help topics: tabpage

Color Schemes
If we return to the buffer containing our shell script, we should see the effects of our 
sh.vim file. When syntax highlighting is turned on (:syn on will do the trick) it assumes
the current color scheme. Vim ships with a bunch of different ones. To see the name of 
the current scheme, type this command:

162  Vim, with Vigor



:colo

and it will display the name. To see the entire set of available color schemes, type :colo 
followed by a space, then the tab key. This will trigger vim’s autocomplete and we should
see the first name in the list. Subsequent use of the tab key will cycle through the list and 
we can try each one.

The ‘desert’ color scheme looks pretty good with shell scripts, so let’s add this to our 
sh.vim file. To do this, switch to the buffer containing that file and add the following 
line:
colorscheme desert

Notice that we used the long form of the colorscheme command. We could have used 
the abbreviated form colo but it’s a common custom to use the long names in 
configuration files for clarity.

There are many additional color schemes for vim on the Internet. To use one, first create 
a ~/.vim/colors directory and then download the new scheme into it. The new scheme 
will appear when we cycle through the list.

Now, save the file and return to our shell script.

Help topics: :colorscheme

Marks and File Marks
We know there are various ways of moving around within document in vim. For 
example, to get to the top, we can type:
gg

To go to the bottom we can type:
G

Vim (and real vi for that matter) also allows us to mark an arbitrary location within a 
document that we can recall at will. To demonstrate this, go to the top of the script and 
type:
ma

Next, go to the bottom of the document and type:
mb

We have just set two marks, the first called “a” and the second called “b”. To recall a 
mark, we precede the name of the mark with the ’ character, like so and we are taken to 
the top of the file again:
'a

Vim, with Vigor  163



We can use any lowercase letter to name a mark. Now, the clever among us will 
remember that we set marks in both the .vimrc file, and the sh.vim file but we used 
uppercase letters.

Yes we did, because they’re special. They’re called file marks and they let us set a mark 
in a file that vim will remember between sessions. Since we set the V mark in the .vimrc
file and the S mark in sh.vim file, if we ever type:

'V

vim will immediately take us to that mark even if vim has to load the file to do it. By 
doing this to .vimrc and sh.vim, we’re set up to edit our configuration files anytime we 
get another bright idea about customizing vim.

Help topics: m '

Visual Mode
Among the best features that vim adds to ordinary vi is visual mode. This mode allows us
to visually select text in our document. If we type:
v

An indicator will appear at the bottom of the screen showing that we have entered this 
mode. While in visual mode, when we move the cursor (using any of the available 
movement commands), the text is both visually highlighted and selected. Once this is 
done we can apply the normal editing commands on the selected text such as c (change), 
d (delete), and y (yank). Typing v a second time will exit visual mode. If we type:
V

we again enter visual mode, but this time selection is done on a line-by-line basis rather 
than by individual characters. This is handy when cutting and copying blocks of code.

There is a third way of using visual mode. If we type:
Ctrl-v

we are able to select rectangular blocks of text by columns. For example, we could select 
a column from a table.

Help topics: v V ^v

Indentation
We’re going to continue working on our shell script, but first we need to talk a little about
indentation. As we know, indentation is used in programming to help communicate 
program structure. The shell does not require any particular style of indentation; it’s 
purely for the benefit of the humans trying to read the code. However, some other 
computer languages, such as Python, require indentation to express program structure.

164  Vim, with Vigor



Indentation is accomplished in one of two ways; either by inserting tab characters or by 
inserting a sequence of spaces. To understand the difference, we have to go way back in 
time to typewriters and teletype machines.

In the beginning, there were typewriters. On a typewriter, in order to make indenting the 
first line of a paragraph easier, someone invented a mechanical device that would move 
the carriage over a set amount of space. Over time, these devices became more 
sophisticated and allowed multiple tab stops to be set. When teletype machines came 
about, they implemented tabs with a specific ASCII character called HT (horizontal tab, 
code 9) which, by default, was rendered by moving the cursor to the next character 
position evenly divisible by 8.

In the early days of computing, when memory was precious, it made sense to conserve 
space in text files by using tab characters to avoid having to pad the text file with spaces.

Using tab characters creates a problem, though. Since a tab character has no intrinsic 
width (it only signifies the desire to move to the next tab stop), it’s up to the receiving 
program to render the tab with some defined width. This means that a file containing tabs 
could be rendered in different ways in different programs and in different contexts.

Since memory is no longer expensive, and using tabs creates this rendering confusion, 
modern practice calls for spaces instead of tabs to perform indentation (though this 
remains somewhat controversial). Vim provides a number of options for setting tabs and 
indentation. An excerpt from the help file for the tabstop option explains the ways vim 
can treat tabs:
There are four main ways to use tabs in Vim:

1. Always keep 'tabstop' at 8, set 'softtabstop' and
   'shiftwidth' to 4 (or 3 or whatever you prefer) and use
   'noexpandtab'.  Then Vim will use a mix of tabs and
   spaces, but typing <Tab> and <BS> will behave like a tab
   appears every 4 (or 3) characters.

2. Set 'tabstop' and 'shiftwidth' to whatever you prefer
   and use 'expandtab'.  This way you will always insert
   spaces.  The formatting will never be messed up when
   'tabstop' is changed.

3. Set 'tabstop' and 'shiftwidth' to whatever you prefer and
   use a |modeline| to set these values when editing the
   file again.  Only works when using Vim to edit the file.

4. Always set 'tabstop' and 'shiftwidth' to the same value,
   and 'noexpandtab'.  This should then work (for initial
   indents only) for any tabstop setting that people use.
   It might be nice to have tabs after the first non-blank
   inserted as spaces if you do this though.  Otherwise,
   aligned comments will be wrong when 'tabstop' is
   changed.

Vim, with Vigor  165



Indentation Settings For Scripts
For our purposes, we will use method 2 and add the following lines to our sh.vim file to 
set tabs to indent 2 spaces. This is a popular setting specified in some shell script coding 
standards.
setlocal tabstop=2
setlocal shiftwidth=2
setlocal expandtab
setlocal softtabstop=2
setlocal autoindent
setlocal smartindent

In addition to the tab settings, we also included the autoindent and smartindent 
settings, which will automate indentation when we write blocks of code.

After adding the indentation settings to our sh.vim file, we’ll add some more lines to our 
shell script (type this in to see how it behaves):
     1  #! /bin/bash
     2  
     3  # This is a shell script to demonstrate features in vim.
     4  # It doesn't really do anything, it just shows what we can do.
     5  
     6  # Constants
     7  A=1
     8  B=2
     9  
    10  if [[ "$A" == "$B" ]]; then
    11    echo "This shows how smartindent works."
    12    echo "This shows how autoindent works."
    13    echo "A and B match."
    14  else
    15    echo "A and B do not match."
    16  fi
    17  
    18  afunction() {
    19    cmd1
    20    cmd2
    21  }
    22  
    23  if [[ -e file ]]; then
    24    cmd1
    25    cmd2
    26  fi

As we type these additional lines into our script, we notice that vim can now 
automatically provide indentation as needed. The autoindent option causes vim to 
repeat the previous line’s indention while the smartindent option provides indention for 
certain program structures such as the function and if statements. This saves a lot of time
while coding and ensures that our code stays nice and neat.

If we find ourselves editing an existing script with a indentation scheme differing from 
our current settings, vim can convert the file. This is done by typing:
:retab

166  Vim, with Vigor



The file will have its tabs adjusted to match our current indentation style.

Help topics: 'tabstop' 'shiftwidth' 'expandtab' 'softtabstop' 'autoindent'
'smartindent'

Power Moves
As we learned in TLCL, vim has lots of movement commands we can use to quickly 
navigate around our documents. These commands can be employed in many useful ways.

Here is a list of the common movement commands. Some of this is review, some is new.
h       Move left (also left-arrow)
l       Move right (also right-arrow)
j       Move down (also down-arrow)
k       Move up (also up-arrow)
0       First character on the line (also the Home key)
^       First non-whitespace character on the line
$       Last character on the line (also the End key)
f{char} Move right to the next occurrence of char on the current
        line
t{char} Move right till (i.e., just before) the next occurrence of
        char on the current line
;       Repeat last f or t command
gg      Go to first line
G       Go to last line. If a count is specified, go to that line.
w       Move forward (right) to beginning of next word
b       Move backward (left) to beginning of previous word
e       Move forward to end of word
)       Move forward to beginning of next sentence
(       Move backward to beginning previous sentence
}       Move forward to beginning of next paragraph
{       Move backward to beginning of previous paragraph

Remember, each of these commands can be preceded with a count of how many times the
command is to be performed.

Operators
Movement commands are often used in conjunction with operators. The movement 
command determines how much of the text the operator affects. Here is a list of the most 
commonly used operators:
c   Change (i.e., delete then insert)
d   Delete/cut
y   Yank (i.e., copy)
~   Toggle case
gu  Make lowercase
gU  Make uppercase
gq  Format text (a topic we'll get to shortly)
g?  ROT13 encoding (for obfiscating text)
>   Shift (i.e., indent) right
<   Shift left

We can use visual mode to easily demonstrate the movement commands. Move the cursor
to the beginning of line 3 of our script and type:

Vim, with Vigor  167



vf.

This will select the text from the beginning of the line to the end of the first sentence. 
Press v again to cancel visual mode. Next, return to the beginning line 3 and type:
v)

to select the first sentence. Cancel visual mode again and type:
v}

to select the entire paragraph (any block of text delimited by a blank line). Pressing } 
again extends the selection to the next paragraph.

Text Object Selection
In addition to the traditional vi movement commands, vim adds a related feature called 
text object selection. These commands only work in conjunction with operators. These 
commands are:
a   Select entire (all) text object.
i   Select interior (in) of text object.

The text objects are:
w   Word
s   Sentence
p   Paragraph
t   Tag block (such as <aaa>...</aaa> used in HTML)
[   [ enclosed block
(   ( enclosed block (b can also be used)
{   { enclosed block (B can also be used)
"   " quoted string
'   ' quoted string
 

The way these work is very interesting. If we place our cursor on a word for example, 
and type:
caw

(short for “change all word”), vim selects the entire word, deletes it, and switches to 
insert mode. Text objects work with visual mode too. Try this: move to line 11 and place 
the cursor inside the quoted string and type:
vi"

The interior of the quoted string will be selected. If we instead type:
va"

the entire string including the quotes is selected.

Help topics: motion.txt text-objects

168  Vim, with Vigor



Text Formatting
Let’s say we wanted to add a license header to the beginning of our script. This would 
consist of a comment block near the top of the file that includes the text of the copyright 
notice.

We’ll move to line 3 of our script and add the text, but before we start, let’s tell vim how 
long we want the lines of text to be. First we’ll ask vim what the current setting is:
:set tw?

Vim should respond:
textwidth=0

“tw” is short for textwidth, the length of lines setting. A value of zero means that vim is 
not enforcing a limit on line length. Let’s set textwidth to another value:
:set tw=75

Vim will now wrap lines (at word boundaries) when the length of a line exceeds this 
value.

Formatting Paragraphs
Normally, we wouldn’t want to set a text width while writing code (though keeping line 
length below 80 characters is a good practice), but for this task it will be useful.

So let’s add our text. Type this in:
# This program is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation, either version 3 of the License, or (at your
# option) any later version.

# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General
# Public License at <http://www.gnu.org/licenses/> for more details.

Notice the magic of vim as we type. Each time the length of the line reaches the text 
width, vim automatically starts a new line including, the comment symbol. While the 
filetype is set for shell scripting, vim understands certain things about shell syntax and 
tries to help. Very handy.

Now let’s say we were not happy with the length of these lines, or that we have edited the
text in such a way that some of the lines are either too long or too short to maintain our 
well-formatted text. Wouldn’t be great is we could reformat our comment block? Well, 
we can. Very easily, in fact.

To demonstrate, let’s change the text width to 65 characters:
:set tw=65

Vim, with Vigor  169



Now place the cursor inside the comment block and type:
gqip

(meaning “format in paragraph”) and watch what happens. Presto, the block is 
reformatted to the new text width! A little later, we will show how to reduce this four key 
sequence down to a single key.

Comment Blocks
There is a fun trick we can perform on this comment block. When we write code, we 
frequently perform testing and debugging by commenting out sections. Vim makes this 
process pretty easy. To try this out, let’s first remove the commenting from our block. We 
will do this by using visual mode to select a block. Place the cursor on the first column of
the first line of the comment block, then enter visual mode:
Ctrl-v

Then, move the cursor right one column and then down to the bottom of the block.

Visual block select

Next, type:
d

This will delete the contents of the selected area. Now our block is uncommented.

To comment the block again, move the cursor to the first character of the block and, using
visual block selection, select the first 2 columns of the block.

170  Vim, with Vigor



Column selection

Next, enter insert mode using Shift-i (command to insert at the beginning of the line), 
then type the # symbol followed by a space. Finally, press the Esc key twice. Vim will 
insert the # symbol and space into each line of the block.

Completed block

Vim, with Vigor  171



Case Conversion
Sometimes, we need to change text from upper to lower case and vice versa. vim has the 
following case conversion commands:
~       Toggle the case of the current character
gU      Convert text to upper case
gu      Convert text to lower case

Both the gU and gu commands can be applied to text selected in visual mode or used in 
conjunction with either movement commands or text object selections. For example:
gUis    Convert the current sentence to upper case
guf:    Convert text from the cursor position to the next ':'
        character on the current line

File Format Conversion
Once in a while, we are inflicted with a text file that was created on a DOS/Windows 
system. These files will contain an extra carriage return at the end of each line. Vim will 
indicate this after loading the file by displaying a “DOS” message at the bottom of the 
editing window. To correct this annoying condition, do the following:
:set fileformat=unix
:w

The file will be rewritten in the correct format.

Help topics: 'textwidth' gq 'fileformat' ~ gu gU

Macros
Text editing sometimes means we get stuck with a tedious repetitive editing task where 
we do the same set of operations over and over again. This is the bane of every computer 
user. Fortunately, vim provides us a way to record a sequence of operations we can later 
playback as needed. These recordings are called macros.

To create a macro, we begin recording by typing q followed by a single letter. The 
character typed after the q becomes the name of the macro. After we start recording, 
everything we type gets stored in the macro. To conclude recording, we type q again.

To demonstrate, let’s consider our comment block again. To create a macro that will 
remove a comment symbol from the beginning of the line, we would do this: move to the 
first line in the comment block and type the following command:
qa^xxjq

Let’s break down what this sequence does:
qa      Start recording macro "a"
^       Move to the first non-whitespace character in the line
xx      Delete the first two characters under the cursor
j       Move down one line

172  Vim, with Vigor



q       End recording

Now that we have removed the comment symbol from the first line and our cursor is on 
the second line, we can replay our macro by typing:
@a

The recorded sequence will be performed. To repeat the macro on succeeding lines, we 
can use the repeat last macro command which is:
@@

Or we could precede the macro invocation with a count as with other commands. For 
example, if we type:
5@a

the macro will be repeated 5 times.

We can undo the effect of the macro by repeatedly typing:
u

One nice thing about macros is that vim remembers them. Each time we exit vim, the 
current macro definitions are stored and ready for reuse the next time we start another 
editing session.

Help topics: q @

Registers
We are no doubt familiar with the idea of copying and pasting in text editors. With vim, 
we know y performs a yank (copy) of the selected text, while p and P each paste text at 
the current cursor location. The way vim does this involves the use of registers.

Registers are named areas of memory where vim stores text. We can think of them as a 
series of string variables. Vim uses one particular set to store text that we delete, but there
are others that we can use to store text and restore it as we desire. It’s like having a multi-
element clipboard.

To refer to a register, we type " followed by a lowercase letter or a digit (though these 
have a special use), for example:
"a

refers to the register named “a”. To place something in the register, we follow the register
with an operation like “yank to end of the line”:
"ay$

To recall the contents of a register, we follow the name of the register with a paste 
operation like so:
"ap

Vim, with Vigor  173



Using registers enables us to place many chunks of text into our clipboard at the same 
time. But even without consciously trying to use registers, vim is using them while we 
perform deletes and yanks.

As we mentioned earlier, the registers named 0-9 have a special use. When we perform 
ordinary yanks and deletes, vim places our latest yank in register 0 and our last nine 
deletes in registers 1-9. As we continue to make deletions, vim moves the previous 
deletion to the next number, so register 1 will contain our most recent deletion and 
register 9 the oldest.

Knowing this allows us to overcome the problem of performing a yank and then a delete 
and losing the text we yanked (a common hazard when using vim). We can always recall 
the latest yank by referencing register 0.

To see the current contents of the registers we can use the command:
:reg

Help topics: " :registers

Insert Sub-Modes
While it’s not obvious, vim has a set of commands inside of insert mode. Most of these 
commands invoke some form of automatic completion to make our typing faster. They’re
a little clumsy, but might be worth a try.

Automatically Complete Word Ctrl-n
Let’s go to the bottom of our script file and enter insert mode to add a new line at the 
bottom. We want the line to read:
afunction && echo "It worked."

We start to type the first few characters (“afun”) and press Ctrl-n. Vim should 
automatically complete the function name “afunction” after we press it. In those cases 
where vim presents us with more than one choice, use Ctrl-n and Ctrl-p to move up 
and down the list. Typing any another character, such as a space, to continue our typing 
will accept our selection and end the automatic completion. Ctrl-e can be use to exit the 
sub-mode immediately.

Insert Register Contents - Ctrl-r
Typing Ctrl-r followed by a single character register name will insert the contents of 
that register. Unlike doing an ordinary paste using p or P, a register insert honors text 
formatting and indentation settings such as textwidth and autoindent.

174  Vim, with Vigor



Automatically Complete Line - Ctrl-x Ctrl-l
Typing Ctrl-x while in insert mode launches a sub-mode of automatic completion 
features. A small menu will appear at the bottom of the display with a list of keys we can 
type to perform different completions.

If we have typed the first few letters of a line found in this or any other file that vim has 
open, typing Ctrl-x Ctrl-l will attempt to automatically complete the line, copying the 
line to the current location.

Automatically Complete Filename Ctrl-x Ctrl-f
This will perform filename completion. If we start the name of an existing path/file, we 
can type Ctrl-x Ctrl-f and vim will attempt to complete the name.

Dictionary Lookup - Ctrl-x Ctrl-k
If we define a dictionary (i.e., a sorted list of words), by adding this line to our 
configuration file:
setlocal dictionary=/usr/share/dict/words

which is the default dictionary on most Linux systems, we can begin typing a word, type 
Ctrl-x Ctrl-k, and vim will attempt to automatically complete the word using the 
dictionary. We will be presented with a list of words from which we can choose the 
desired entry.

Help topics: i_^n i_^p i_^x^l i_^x^r i_^x^f i_^x^k 'dictionary'

Mapping
Like many interactive command line programs, vim allows users to remap keys to 
customize vim’s behavior. It has a specific command for this, map, that allows a key to be 
assigned the function of another key or a sequence of keys. Further, vim allows us to say 
that a key is to be remapped only in a certain mode, for example only in normal mode but
not in insert nor command modes.

Before we go on, we should point out that use of the map command is discouraged. It can 
create nasty side effects in some situations. Vim provides another set of mapping 
commands that are safer to use.

Earlier, we looked at the paragraph reformatting command sequence gqip, which means 
“format in paragraph.” To demonstrate a useful remapping, we will map the Q key to 
generate this sequence. We can do this by entering:
:nnoremap Q gqip

Vim, with Vigor  175



After executing this command, pressing the Q key in normal mode will cause the normal 
mode sequence gqip to be performed.

The nnoremap command is one of the noremap commands, the safe version of map 
command. The members of this family include:
noremap     Map key regardless of mode
nnoremap    Map normal mode key
inoremap    Map insert mode key
cnoremap    Map command mode key

Most of the time we will be remapping normal mode keys, so the nnoremap command 
will be the used most often. Here is another example:
:nnoremap S :split<Return>

This command maps the S key to enter command mode, type the split command and a 
carriage return. The “<Return>” is called a key notation. For non-printable characters, 
vim has a representation that can be used to indicate the key when we specifying 
mapping. To see the entire list of possible codes, enter:
:h key-notation

So how do we know which keys are available for remapping assignment? As vim uses 
almost every key for something, we have to make a judgment call as to what native 
functionality we are willing to give up to get the mapping we want. In the case of the Q 
key, which we used in our first example, it is normally used to invoke ex mode, a very 
rarely used feature. There are many such cases in vim; we just have to be selective. It is 
best to check the key first by doing something like:
:h Q

to see how a key is being used before we apply our own mapping.

To make mappings permanent, we can add these mapping commands to our .vimrc file:

nnoremap Q gqip
nnoremap S :split<Return>

Help topics: :map key-notation

Snippets
Mapping is not restricted to single characters. We can use sequences too. This is often 
helpful when we want to create a number of easily remembered, related commands of our
own design. Take for example, inserting boilerplate text into a document. If we had a 
collection of these snippets, we might want to uniquely name them but have a common 
structure to the name for easily recollection.

We added the GPL notice to the comment block at the beginning of our script. As this is 
rather tedious to type, and we might to use it again, it makes a good candidate for being a 
snippet.

176  Vim, with Vigor



To do this, we’ll first go out to the shell and create a directory to store our snippet text 
files. It doesn’t matter where we put the snippet files, but in the interest of keeping all the 
vim stuff together, we’ll put them with our other vim-related files.
:sh
[me@linuxbox ~]$ mkdir ~/.vim/snippets
[me@linuxbox ~]$ exit

Next, we’ll copy the license by highlighting the text in visual mode and yanking it. To 
create the snippet file, we’ll open a new buffer:
:e ~/.vim/snippets/gpl.sh

Thus creating a new file called gpl.sh. Finally, we’ll paste the copied text into our new 
file and save it:
p
:w

Now that we have our snippet file in place, we are ready to define our mapping:
:nnoremap ,GPL :r ~/.vim/snippets/gpl.sh<Return>

We map “,GPL” to a command that will cause vim to read the snippet file into the current
buffer. The leading comma is used as a leader character. The comma is a rarely used 
command that is usually safe to remap. Using a leader character will reduce the number 
of actual vim commands we have to remap if we create a lot of snippets.

As we add mappings, it’s useful to know what they all are. To display a list of mappings, 
we use the :map command followed by no arguments:

:map

Once we are satisfied with our remapping, we can add it to one of our vim configuration 
files. If we want it to be global (that is, it applies to all types of files), we could put it in 
our .vimrc file like this:
nnoremap ,GPL :r ~/.vim/snippets/gpl.sh<Return>

If, on the other hand, we want it to be specific to a particular file type, we would put it in 
the appropriate file such as ~/.vim/ftplugin/sh.vim like this:
nnoremap <buffer> ,GPL :r ~/.vim/snippets/gpl.sh<Return>

In this case, we add the special argument <buffer> to make the mapping local to the 
current buffer containing the particular file type.

Help topics: :map <buffer>

Finishing Our Script
With all that we have learned so far, it should be pretty easy to go ahead and finish our 
script:
#! /bin/bash

Vim, with Vigor  177



# ---------------------------------------------------------------
# This is a shell script to demonstrate features in vim. It
# doesn't really do anything, it just shows what we can do.
# 
# This program is free software: you can redistribute it an/or
# modify it under the terms of the GNU General Public License as
# published by the Free Software Foundation, either version 3 of
# the license, or (at your option) any later version.
# 
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.See the GNU
# General Public License at <http://www.gnu.org/licenses/> for
# more details.
# ---------------------------------------------------------------

# ---------------------------------------------------------------
# Constants
# ---------------------------------------------------------------

A=1
B=2

# ---------------------------------------------------------------
# Functions
# ---------------------------------------------------------------

afunction() {
  cmd1
  cmd2
}

# ---------------------------------------------------------------
# Main Logic
# ---------------------------------------------------------------

if [[ $A == $B ]]; then
  echo "This shows how smartindent works."
  echo "This shows how autoindent works."
  echo "A and B match."
else
  echo "A and B do not match."
fi

if [[ -e file ]]; then
  cmd1
  cmd2
fi

Using External Commands
Vim is able to execute external commands and add the result to the current buffer or to 
filter a text selection using an external command.

178  Vim, with Vigor



Loading Output From a Command Into the Buffer
Let’s edit an old friend. If we don’t have a copy to edit, we can make one. First we’ll 
open a buffer:
:e dir-list.txt

Next, we’ll load the buffer with some appropriate text:
:r ! ls -l /usr/bin

This will read the results of the specified external command into our buffer.

Running an External Command on the Current File
Let’s save our file and then run an external command on it:
:w
:! wc -l %

Here we tell vim to execute the wc command on the current file dir-list.txt. This does
not affect the current buffer, just the file when we specify it with the % symbol.

Using an External Command to Filter the Current Buffer
Let’s apply a filter to the text. To do this, we need to select some text. The easiest way to 
do this is with visual mode:
ggVG

This will move the cursor to the beginning of the file and enter visual mode then move to 
the end of the file, thus selecting the entire buffer.

We’ll filter the selection to remove everything except lines containing the string “zip”. 
When we start entering a command after performing a visual selection, the presence of 
the selection will be indicated this way:
:'<,'>

This actually signifies a range. We could just as easily specify a pair of line numbers such
as 1, 100 instead. To complete our command, we add our filter:
:'<,'> ! grep zip

We are not limited to a single command. We can also specify pipelines, for example:
:'<,'> ! grep zip | sort

After running this command, our buffer contains a small selection of files, each 
containing the letters “zip” in the name.

Help topics: : ! filter

Vim, with Vigor  179



File System Management and Navigation
We know that we can load files into vim by specifying them on the command line when 
we initially invoke vim, and that we can load files from within vim with the :edit and
:read commands. But vim also provides more advanced ways of working with the file 
system.

netrw
When we load the filetype plugin (as we have set up our .vimrc file to do), vim also 
loads another plugin called netrw. This plugin can, as its name suggests, read and write 
files from the local file system and from remote systems over the network. In this 
adventure, we’re going concern ourselves with using netrw as a local file browser.

To start the browser in the current window, we use the :Ex (short for :Explore) 
command. To start the browser in a split window, we use the amusingly named :Sex 
(short for :Sexplore) command. The browser looks like this:

File browser

At the top, we have the banner which provides some clues to the browser’s operation, 
followed by a vertical list of directories and files. We can toggle the banner on and off 
with Shift-i and cycle through available listing views by pressing the i key. The sort 
order (name, time, size) may be changed with s key.

180  Vim, with Vigor



Using the browser is easy. To select a file or directory, we can use the up and down 
arrows (or Ctrl-p and Ctrl-n) to move the cursor. Pressing Enter will open the selected 
file or directory.

:find
The :find command loads a file by searching a path variable maintained by vim. With
:find we can specify a partial file name, and vim will attempt to locate the file and 
automatically complete the name when Tab key is pressed.

The action of the :find command can be enhanced if the characters “**” are appended to
the end of the path. The best way to do this is:
:set path+=**

Adding this to the path allows :find to search directories recursively. For example, we 
could change the current working directory to the top of a project’s source file tree and 
use :find to load any file in the entire tree.

wildmenu
Another cool enhancement we can apply is the wildmenu. This is a highlighted bar that 
will appear above the command line when we are entering file names. The word “wild” 
in the name refers to use of the “wild” key, by default the Tab key. When the wild key is 
pressed, automatic completion is attempted with the list of possible matches displayed in 
the wildmenu. Using the left and right arrow keys (or Ctrl-p and Ctrl-n) allows us to 
choose one of the displayed items.

Vim, with Vigor  181



The wildmenu

We can turn on the wildmenu with this command:
:set wildmenu

Opening Files Named in a Document
If the document we are editing contains a file name, we can open that file by placing the 
cursor on the file name and typing either of these commands:
gf      Open file name under cursor
^w^f    Open file name under cursor in new window

Help topics: netrw :find 'path' 'wildmenu' gf ^w^f

One Does Not Live by Code Alone
While vim is most often associated with writing code of all sorts, it’s good at writing 
ordinary prose as well. Need proof? All of the adventures were written using vim running
on a Raspberry Pi!

We can configure vim to work well with text by creating a file for the text file type in the 
~/.vim/ftplugin directory:

"### ~/.vim/ftplugin/text.vim
setlocal textwidth=75
setlocal tabstop=4
setlocal shiftwidth=4
setlocal expandtab

182  Vim, with Vigor



This configuration will automatically wrap lines at word boundaries once the line length 
exceeds 75 characters, and will set tabs to 4 spaces wide. Remember that when 
textwidth is non-zero, vim will automatically constrain line length, and we can use the 
gqip command to reformat paragraphs to the specified width.

Spell Checking
When we write text, it’s handy to perform spell checking while we type. Fortunately, vim 
can do this, too. If we add the following lines to our text.vim file, vim will help fix 
those pesky spelling mistakes:
setlocal spelllang=en_us
setlocal dictionary=/usr/share/dict/words
setlocal spell

The first line defines the language for spell checking, in this case US English. Next, we 
specify the dictionary file to use. Most Linux distributions include this list of words, but 
other dictionary files can be used. The final line turns on the spell checker. When active, 
the spell checker highlights misspelled words (that is, any word not found in the 
dictionary) as we type.

Highlighted misspellings

Correcting misspelled words is pretty easy. Vim provides the following commands:
]s                      Next misspelled word
[s                      Previous misspelled word
z=                      Display suggested corrections
zg                      Add word to personal dictionary

To correct a misspelling, we place the cursor on the highlighted word and type:

Vim, with Vigor  183



z=

Vim will display a list of suggested corrections and we choose from the list. It is also 
possible to maintain a personal dictionary of words not found in the main dictionary, for 
example specialized technical terms. Vim creates the personal dictionary automatically 
(in ~/.vim/spell) and words are added to it when we place the cursor on the highlighted
word and type:
zg

Once the word is added to our personal dictionary it will no longer be marked as 
misspelled by the spelling checker.

Suggested corrections

Help topics: 'spelllang' 'spell'

More .vimrc Tricks
Before we go, there are a few more features we can add to our .vimrc file to juice things 
up a bit. The first one:
set laststatus=2

This will cause vim to display a status bar near the bottom of the display. It will normally 
appear when more than one window is open (lastatatus=1), but changing this value to 
2 causes it to always be displayed regardless of the number of windows. Next, we have:
set ruler

184  Vim, with Vigor



will display the cursor position (row, column, relative %) in the window status bar. 
Handy for knowing where we are within a file.

Finally, we’ll add mouse support (not that we should ever use a mouse ;-):
if has('mouse')
  set mouse=a
endif

This will activate mouse support if vim detects a mouse. Mouse support allows us to 
position the cursor, switching windows if needed. It works in visual mode too.

Help topics: 'laststatus' 'ruler' 'mouse'

Summing Up
We can sometimes think of vim as being a metaphor for the command line itself. Both are
arcane, vast, and capable of many amazing feats. Despite its ancient ancestry, vim 
remains a vital and popular tool for developers and administrators.

Here are the final versions of our 3 configuration files:
"### ~/.vimrc
set nocompatible
filetype plugin on
nnoremap Q gqip
nnoremap S :split<Return>
set path+=**
set wildmenu
set spelllang=en_us
if has('mouse')
  set mouse=a
endif
set laststatus=2
set ruler

"### ~/.vim/ftplugin/sh.vim
setlocal number
colorscheme desert
syntax off
setlocal tabstop=2
setlocal shiftwidth=2
setlocal expandtab
setlocal softtabstop=2
setlocal autoindent
setlocal smartindent

"### ~/.vim/ftplugin/text.vim
colorscheme desert
setlocal textwidth=75
setlocal tabstop=4
setlocal shiftwidth=4
setlocal expandtab
setlocal complete=.,w,b,u,t,i
setlocal dictionary=/usr/share/dict/words
setlocal spell

Vim, with Vigor  185



We covered a lot of ground in this adventure and it will take some time for it to all sink 
in. The best advice was given back in TLCL. The only way to become a vim master is to 
“practice, practice, practice!”

Further Reading
Vim has a large and enthusiastic user community. As a result, there are many online help 
and training resources. Here are some that I found useful during my research for this 
adventure.

• The eternal struggle between tabs and spaces in indentation: 
https://www.jwz.org/doc/tabs-vs-spaces.html

• List of key notations used when remapping keys: 
http://vimdoc.sourceforge.net/htmldoc/intro.html#key-notation

• A concise tutorial on vim registers: https://www.brianstorti.com/vim-registers/

• Learn Vimscript the Hard Way is a detailed tutorial of the vim scripting language 
useful for customizing vim and even writing your own plugins: 
https://learnvimscriptthehardway.stevelosh.com

• From the same source, a discussion of the leader key: 
https://learnvimscriptthehardway.stevelosh.com/chapters/06.html

• Using external commands and the shell while inside vim: 
https://www.linux.com/training-tutorials/vim-tips-working-external-commands

• Vim: you don’t need NERDtree or (maybe) netrw https://shapeshed.com/vim-
netrw/#removing-the-banner

• A tutorial on using the vim spell checker: https://www.linux.com/training-
tutorials/using-spell-checking-vim/

Videos
There are also a lot of video tutorials for vim. Here are a few:

• How to Do 90% of What Plugins Do (With Just Vim): 
https://youtu.be/XA2WjJbmmoM

• Let Vim do the Typing: https://youtu.be/3TX3kV3TICU

• Damian Conway, “More Instantly Better Vim” - OSCON 2013: 
https://youtu.be/aHm36-na4-4

• vim + tmux - OMG!Code: https://youtu.be/5r6yzFEXajQ

186  Vim, with Vigor

https://youtu.be/5r6yzFEXajQ
https://youtu.be/aHm36-na4-4
https://youtu.be/3TX3kV3TICU
https://youtu.be/XA2WjJbmmoM
https://www.linux.com/training-tutorials/using-spell-checking-vim/
https://www.linux.com/training-tutorials/using-spell-checking-vim/
https://shapeshed.com/vim-netrw/#removing-the-banner
https://shapeshed.com/vim-netrw/#removing-the-banner
https://www.linux.com/training-tutorials/vim-tips-working-external-commands
https://learnvimscriptthehardway.stevelosh.com/chapters/06.html
https://learnvimscriptthehardway.stevelosh.com/
https://www.brianstorti.com/vim-registers/
http://vimdoc.sourceforge.net/htmldoc/intro.html#key-notation
https://www.jwz.org/doc/tabs-vs-spaces.html


11 source
Most programming languages permit programmers to specify external files to be included
within their programs. This is often used to add “boilerplate” code to programs for such 
things as defining standard constants and referencing external library function definitions.

Bash (along with ksh and zsh) has a builtin command, source, that implements this 
feature. We looked at source briefly when we worked with the .profile and .bashrc 
files used to establish the shell environment.

In this adventure, we will look at source again and discover the ways it can make our 
scripts more powerful and easier to maintain.

To recap, source reads a specified file and executes the commands within it using the 
current shell. It works both with the interactive command line and within a script. Using 
the command line for example, we can reload the .bashrc file by executing the 
following command:

me@linuxbox: ~$ source ~/.bashrc

Note that the source command can be abbreviated by a single dot character like so:

me@linuxbox: ~$ . ~/.bashrc

When source is used on the command line, the commands in the file are treated as if 
they are being typed directly at the keyboard. In a shell script, the commands are treated 
as though they are part of the script.

Configuration Files
During our exploration of the Linux ecosystem, we have seen that many programs rely on
configuration files. Most of these are simple text files just like our bash shell scripts. By 
using source, we can easily create configuration files for our shell scripts as well.

Consider this example. Let’s imagine that we have several computers on our network that
need to get backed up on a regular basis and that a central backup server is used to store 
the files from these various systems. On each of the backup client systems we have a 
script called back_me_up that copies the files over the network. Let’s further imagine that
each client system needs to back up a different set directories.

To implement this, we might define a constant in the back_me_up script like this:

BACKUP_DIRS="/etc /usr/local /home"

However, doing it this way will require that we maintain a separate version of the script 
for each client. This will make maintaining the script much more laborious, as any future 
improvement to the script will have to be applied to each copy of the script individually. 

source  187



What’s more, this list of directories might be useful to other programs, too. For example, 
we could have a file restoration script called restore_me that restores files from the 
backup server to the backup client system. If this were the case, we would then have 
twice as many scripts to maintain. A much better way handle this issue would be to create
a configuration file to define the BACKUP_DIR constant and source it into our scripts at run
time.

Here’s how we could do it.

First, we will create a configuration file named back_me_up.cfg and place it somewhere 
sensible. Since the back_me_up and restore_me scripts are used on a system-wide basis 
(as would most backup programs), we will treat them like locally installed system 
resources. Thus, we would put them in the /usr/local/sbin directory and the 
configuration file in /usr/local/etc. The configuration file would contain the 
following:
# Configuration file for the back_me_up program

BACKUP_DIRS="/etc /usr/local /home"

While our configuration file must contain valid shell syntax, since its contents are 
executed by the shell, it differs from a real shell script in two regards. First, it does not 
require a shebang to indicate which shell executes it, and second, the file does not need 
executable permissions. It only needs to be readable by the shell.

Next, we would add the following code to the back_me_up and restore_me scripts to 
source our configuration file:
CONFIG_FILE=/usr/local/etc/back_me_up.cfg

if [[ -r "$CONFIG_FILE" ]]; then
    source "$CONFIG_FILE"
else
    echo "Cannot read configuration file!" >&2
    exit 1
fi

Function Libraries
In addition to the configuration shared by both the back_me_up and restore_me scripts, 
there could be code shared between the two programs. For example, it makes sense to 
have a shared function to display error messages:
# ---------------------------------------------------------------------------
# Send message to std error
#   Options:    none
#   Arguments:  1 error_message
#   Notes:      Use this function to report errors to standard error. Does
#               not generate an error status.
# ---------------------------------------------------------------------------
error_msg() {

188  source



printf "%s\n" "$1" >&2
}

How about a function that detects if the backup server is available on the network:
# ---------------------------------------------------------------------------
# Detect if the specified host is available
#   Options:    none 
#   Arguments:  1 hostname
#   Notes:      
# ---------------------------------------------------------------------------
ping_host() {

  local MSG="Usage: ${FUNCNAME[0]} host"
  local MSG2="${FUNCNAME[0]}: host $1 unreachable"

  [[ $# -eq 1 ]] || { error_msg "$MSG" ;return 1; }
  ping -c1 "$1" &> /dev/null || { error_msg "$MSG2"; return 1; }
  return 0
}

Another function both scripts could use checks that external programs we need for the 
scripts to run (like rsync) are actually installed:
# ---------------------------------------------------------------------------
# Check if function/application is installed
#   Options:    none
#   Arguments:  application...
#   Notes:      Exit status equals the number of missing functions/apps.
# ---------------------------------------------------------------------------
app_avail() {

  local MSG1="Usage: ${FUNCNAME[0]} app..."
  local MSG2
  local exit_status=0

  [[ $# -gt 0 ]] || { error_msg "$MSG1"; return 1; }
  while [[ -n "$1" ]]; do
    MSG2="Required program '$1' not available - please install"
    type -t "$1" > /dev/null || \
      { error_msg "$MSG2"; exit_status=$((exit_status + 1)); }
    shift
  done
  return "$exit_status"
}

To share these functions between the back_me_up and restore_me scripts, we could 
build a library of functions and source that library. As an example, we could put all the 
common code in a file called /usr/local/lib/bmulib.sh and add the following code to
both scripts to source that file:
FUNCLIB=/usr/local/lib/bmulib.sh

if [[ -r "$FUNCLIB" ]]; then
    source "$FUNCLIB"
else
    echo "Cannot read function library!" >&2
    exit 1
fi

source  189



General Purpose Libraries
Since we hope to become prolific script writers, it makes sense over time, to build a 
library of common code that our future scripts could potentially use. When undertaking 
such a project, it’s wise to write high quality functions for the library, as the code may get
heavy use. It’s important to test carefully, include a lot of error handling, and fully 
document the functions. After all, the goal here is to save time writing good scripts, so 
invest the time up front to save time later.

Let’s Not Forget .bashrc
source can be a powerful tool for coordinating the configuration of small sets of 
machines. For large sets, there are more powerful tools, but source works fine if the job 
is not too big.

We’ve worked with the .bashrc file before and added things like aliases and a few shell 
functions. However, when we work with multiple systems (for example, a small 
network), it might be a good idea to create a common configuration file to align all of the 
systems. To demonstrate, let’s create a file called .mynetworkrc.sh and place all of the 
common aliases and shell function we would expect on every machine. To use this file, 
we would add this one line of code to .bashrc:

[[ -r ~/.mynetworkrc.sh ]] && source ~./.mynetworkrc.sh

The advantage of doing it this way is that we won’t have to cut and paste large sections of
code every time we configure a new machine or perform an operating system upgrade. 
We just copy the .mynetwrokrc.sh file to the new machine and add one line to .bashrc.

We can even go further and create a host-specific configuration file that the
.mynetworkrc.sh file will source. This would be handy if we need to override 
something in .mynetworkrc.sh on a particular host. We can do this by creating a 
configuration file with a file name based on the system’s host name. For example, if our 
system’s host name is linuxbox1 we could create a configuration file named
.linuxbox1rc.sh and add this line of code to the .mynetworkrc.sh file:

[[ -r ~/.$(hostname)rc.sh ]] && source ~/.$(hostname)rc.sh

By using the hostname command we are able to build a file name that is specific to a 
particular host.

So, what could we put in our .mynetworkrc.sh file? Here are some ideas:

### Aliases ###

# Reload the .mynetworkrc.sh file. Handy after editing.
alias reload='source ~/.mynetworkrc.sh'

# Get a root shell

190  source



alias root='sudo -i'

# Print the size of a terminal window in rows and columns
alias term_size='echo "Rows=$(tput lines) Cols=$(tput cols)"'

### Functions ###

# Check to see if a specified host is alive on the network

ping_host() {

  local target

  if [[ -z "$1" ]]; then
    echo "Usage: ping_host host" >&2
    return 1
  fi
  target="$1"
  ping -c1 "$target" &> /dev/null || \
    { echo "Host '$target' unreachable." >&2; return 1; }
  return 0
}

# Display a summary of system health

status() {
  { # Display system uptime
    echo -e "\nuptime:"
    uptime

    # Display disk resources skipping snap's pseudo disks 
    echo -e "\ndisk space:"
    df -h 2> /dev/null | grep -v snap
    echo -e "\ninodes:"
    df -i 2> /dev/null | grep -v snap
    echo -e "\nblock devices:"
    /bin/lsblk | grep -v snap

    # Display memory resources
    echo -e "\nmemory:"
    free -m

    # Display latest log file entries
    if [[ -r /var/log/syslog ]]; then # Ubuntu
      echo -e "\nsyslog:"
      tail /var/log/syslog
    fi
    if [[ -r /var/log/messages ]]; then # Debian, et al.
      echo -e "\nmessages:"
      tail /var/log/messages
    fi
    if [[ -r /var/log/journal ]]; then # Arch, others using systemd
      echo -e "\njournal:"
      journalctl | tail
    fi
  } | less
}

# Install a package from a distro repository
# Supports Ubuntu, Debian, Fedora, CentOS

source  191



install() {
  if [[ -z "$1" ]]; then
    echo "Usage: install package..." >&2
    return 1
  elif [[ "$1" == "-h" || "$1" == "--help" ]]; then
    echo "Usage: install package..."
    return
  elif [[ -x /usr/bin/apt ]]; then
    sudo apt update && sudo apt install "$@"
    return
  elif [[ -x /usr/bin/apt-get ]]; then
    sudo apt-get update && sudo apt-get install "$@"
    return
  elif [[ -x /usr/bin/yum ]]; then
    sudo yum install -y "$@"
  fi
}

# Perform a system update
# Supports Debian, Ubuntu, Fedora, CentOS, Arch

update() {
  if [[ -x /usr/bin/apt ]]; then # Debian, et al
    sudo apt update && sudo apt upgrade
    return
  elif [[ -x /usr/bin/apt-get ]]; then # Old Debian, et al
    sudo apt-get update && sudo apt-get upgrade
    return
  elif [[ -x /usr/bin/yum ]]; then # CentOS/Fedora
    # su -c "yum update"
    sudo yum update
    return
  elif [[ -x /usr/bin/pacman ]]; then # Arch
    sudo pacman -Syu
  fi
}

# Display distro release info (prints OS name and version)

version() {

  local s

  for s in os-release \
           lsb-release \
           debian_version \
           centos-release \
           fedora-release; do
    [[ -r "/etc/$s" ]] && cat "/etc/$s"
  done
}

Ever Wonder Why it’s Called .bashrc?
In our various wanderings around the Linux file system, we have encountered files with 
names that end with the mysterious suffix “rc” like .bashrc, .vimrc, etc. Heck, many 
distributions have a bunch of directories in /etc named rc. Why is that? It’s a holdover 
from ancient Unix. Its original meaning was “run commands,” but it later became “run-

192  source



control.” A run-control file is generally some kind of script or configuration file that 
prepares an environment for a program to use. In the case of .bashrc for example, it’s a 
script that prepares a user’s bash shell environment.

Security Considerations and Other Subtleties
Even though sourced files are not directly executable, they do contain code that will be 
executed by anything that sources them. It is important, therefore, that permissions be set 
to allow writing only by their owners.
me@linuxbox:~$ sudo chmod 644 /usr/local/etc/back_me_up.cfg

If a sourced file contains confidential information (as a backup program might), set the 
permissions to 600.

While bash, ksh, and zsh all have the source builtin, dash and all other strictly POSIX 
compatible shells support only the single dot (.).

If the file name argument given to source does not contain a / character, the directories 
listed in the PATH variable are searched for the specified file. For security reasons, it’s 
probably not a good idea to rely on this. Always specify a explicit path name.

Another subtlety has to do with positional parameters. As source executes its commands 
in the current shell environment, this includes the positional parameters a script was 
given as well. This is fine in most cases; however, if source is used within a shell 
function and that shell function has its own positional parameters, source will ignore 
them and use the shell’s environment instead. To overcome this, positional parameters 
may be specified after the file name. Consider the following script:
#!/bin/bash

# foo_script

source ~/foo.sh

foo() {
  source ~/foo.sh
}

foo "string2"

foo.sh contains this one line of code:
echo $1

We expect to see the following output:
me@linuxbox: ~$ foo_script string1
string1
string2

But, what we actually get is this:

source  193



me@linuxbox: ~$ foo_script string1
string1
string1

This is because source uses the shell environment the script was given, not the one that 
exists when the function called. To correct this, we need to write our script this way:
#!/bin/bash

# foo_script

source ~/foo.sh

foo() {
  source ~/foo.sh "$1"
}

foo "string2"

By adding the desired parameter to the source command within the function foo, we are 
able to get the desired behavior. Yes, it’s subtle.

Summing Up
By using source, we can greatly reduce the effort needed to maintain our bash scripts 
particularly when we are deploying them across multiple machines. It also allows us to 
effectively reuse code with function libraries that all of our scripts can share. Finally, we 
can use source to build much more capable shell environments for our day to day 
command line use.

Further Reading
• A Wikipedia article on the dot command from which the source builtin is derived: 

https://en.wikipedia.org/wiki/Dot_(command)

• Another article about run-commands: https://en.wikipedia.org/wiki/Run_commands

194  source

https://en.wikipedia.org/wiki/Run_commands
https://en.wikipedia.org/wiki/Dot_(command)


12 Coding Standards Part 1: Our Own
Most computer programming is done by organizations and teams. Some programs are 
developed by lone individuals within a team and others by collaborative groups. In order 
to promote program quality, many organizations develop formal programming guidelines 
called coding standards that define specific technical and stylistic coding practices to 
help ensure code quality and consistency.

In this adventure, we’re going to develop our own shell script coding standard to be 
known henceforth as the LinuxCommand Bash Script Coding Style Guide. The Source 
adventure is a suggested prerequisite for this adventure.

Roaming around the Internet, we can find lots of articles about “proper” shell script 
standards and practices. Some are listed in the “Further Reading” section at the end of 
this adventure. While the scripts presented in TLCL do not follow any particular standard 
(instead, they present common practice from different historical perspectives), their 
design promotes several important ideas:

1. Write cleanly and simply. Look for the simplest and most easily understood 
solutions to problems.

2. Use modern idioms, but be aware of the old ones. It’s important that scripts fit 
within common practice so that experienced people can easily understand them.

3. Be careful and defensive. Follow Murphy’s Law: anything that can go wrong 
eventually will.

4. Document your work.

5. There are lots of ways to do things, but some ways are better than others.

Coding standards generally support the same goals, but with more specificity.

In reviewing the Internet’s take on shell scripting standards, one might notice a certain 
undercurrent of hostility towards using the shell as a programming medium at all. Why is 
this?

Most programmers don’t learn the shell at the beginning of their programming careers; 
instead, they learn it (haphazardly) after they have learned one or more traditional 
programming languages. Compared to most programming languages, the shell is an odd 
beast that seems, to many, a chaotic mess. This is largely due to the shell’s unique role as 
both a command line interpreter and a scripting language.

As with all programming languages, the shell has its particular strengths and weaknesses. 
The shell is good at solving certain kinds of problems, and not so good at others. Like all 
good artists, we need to understand the bounds of our medium.

Coding Standards Part 1: Our Own  195



What the Shell is Good At
• The shell is a powerful glue for connecting thousands of command line programs 

together into solutions to a variety of data processing and system administration 
problems.

• The shell is adept at batch processing. In the early days of computing, programs 
were not interactive; that is, they started, they carried out their tasks, and they 
ended. This style of programming dominated computing until the early 1960s when
disk storage and virtual memory made timesharing and interactive programs 
possible. Those of us who remember MS-DOS will recall that it had a limp 
substitute for shell scripts called batch files.

What the Shell is Not So Good At
• The shell does not excel with programs requiring a lot of user interaction. Yes, the 

shell does have the read command and we could use dialog, but let’s face it, the 
shell is not very good at this.

• The shell is not suitable for implementing algorithms requiring complex data 
structures. While the shell does have integers, strings, and one dimensional arrays 
(which can be associative), it doesn’t support anything beyond that. For example, it 
doesn’t have structures, enumerated or Boolean types, or even floating point 
numbers.

A Coding Standard of Our Own
Keeping the points above in mind, let’s make our own shell script coding standard. It will
be an amalgam of various published standards, along with a dash of the author’s own 
humble wisdom on the subject. As the name implies, the LinuxCommand Bash Script 
Coding Style Guide coding standard will be very bash specific and as such, it will use 
some features that are not found in strictly POSIX complaint shells.

Script Naming, Location, and Permissions
Like other executables, shell script file names should not include an extension. Shared 
libraries of shell code which are not standalone executables should have the extension
.sh if the code is portable across multiple shells (for example bash and zsh) or .bash if 
the code is bash-specific.

For ease of execution, scripts should be placed in a directory listed in the user’s PATH. 
The ~/bin directory is a good location for personal scripts as most Linux distributions 
support this out of the box. Scripts intended for use by all users should be located in the
/usr/local/bin directory. System administration scripts (ones intended for the 

196  Coding Standards Part 1: Our Own



superuser) should be placed in /usr/local/sbin. Shared code can be located in any 
subdirectory of the user’s home directory. Shared code intended for use system wide 
should be placed in /usr/local/lib unless the shared code specifies only configuration 
settings, in which case it should be located in /usr/local/etc.

Executable code must be both readable and executable to be used, thus the permission 
setting for shell scripts should be 755, 750 or 700 depending on security requirements. 
Shared code need only be readable, thus the permissions for shared code should be 644, 
640, or 600.

Structure
A shell script is divided into five sections. They are:

1. The shebang
2. The comment block
3. Constants
4. Functions
5. Program body

The Shebang
The first line of a script should be a shebang in either of the following forms:
#!/bin/bash

Or
#!/usr/bin/env bash

The second form is used in cases where the script is intended for use on a non-Linux 
system (such as macOS). The env command will search the user’s PATH for a bash 
executable and launch the first instance it finds. Of the two forms, the first is preferred, as
its results are less ambiguous.

The Comment Block
The first bit of documentation to appear in the script is the comment block. This set of 
comments should include the name of the script and its author, any necessary copyright 
and licensing information, a brief description of the script’s purpose, and its command 
line options and arguments.

It is also useful to include version information and a revision history. Here is an example 
of a fully populated comment block. The exact visual style of the block is undefined and 
is left to the programmer’s discretion.
# ---------------------------------------------------------------------------
# new_script - Bash shell script template generator

Coding Standards Part 1: Our Own  197



# Copyright 2012-2021, William Shotts <bshotts@users.sourceforge.net>

# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.

# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License at <http://www.gnu.org/licenses/> for
# more details.

# Usage: new_script [[-h|--help]
#        new_script [-q|--quiet] [-s|--root] [script]]

# Revision history:
# 2021-04-02  Updated to new coding standard (3.5)
# 2019-05-09  Added support for shell scripting libraries (3.4)
# 2015-09-14  Minor cleanups suggested by Shellcheck (3.3)
# 2014-01-21  Minor formatting corrections (3.2)
# 2014-01-12  Various cleanups (3.1)
# 2012-05-14  Created
# ---------------------------------------------------------------------------

Constants
After the comment block, we define the constants used by the script. As we recall, 
constants are variables that have a fixed value. They are used to define values that are 
used in various locations in the script. Constants simplify script maintenance by 
eliminating hard coded values scattered throughout the code. By placing this section at 
the top, changes to the script can be made more easily.

There are two constants that every script should include. First, a constant that contains the
name of the program, for example:
PROGNAME=${0##*/}

This value is useful for such things as help and error messages. In the example above, the
name of the program is calculated from the first word on the command line that invoked 
the script ($0) with any leading path name stripped off. By calculating it this way, if the 
name of the script file ever changes, the constant will automatically contain the new 
name.

The second constant that should be included contains the script’s version number. Like 
the PROGNAME constant, this value is useful in help and error messages.

VERSION="3.5"

Constants should also be defined for numerical values such as maximum or minimum 
limits used in calculations, as well as for the names of files or directories used by, or 
acted upon, by the script.

198  Coding Standards Part 1: Our Own



Functions
Function definitions should appear next in the script. They should follow an order that 
indicates their hierarchy; that is, functions should be ordered so they are defined before 
they are called. For example, if funct_b calls funct_a, function funct_a should be 
defined ahead of func_b.

Functions should have the following form:
func_b {

  local v1="$1"
  local v2="$2"

  command1
  command2
  return
}

Positional parameters passed to a function should be assigned to local variables with 
descriptive names to clarify how the parameters are used. Unless there is a good reason, 
all functions should end with a return statement with an exit status as required.

Each function defined in a code library should be preceded by a short comment block that
lists the function’s name, purpose, and positional parameters.

Program Body
The final section of a script is the program body, where we get to do what we came here 
to do. In this section we handle such things as positional parameter processing, 
acquisition and validation of required input, processing, and output.

A common practice is to write the program body as a very simple abstraction of the 
program, so that the basic program flow is easy to understand and most of the fussy bits 
are placed in functions defined above the program body.

The end of the program body should include some means of housekeeping, to do such 
things as removing temporary files. All scripts should return a useful exit status.

Formatting and Visual Style
Good visual layout makes scripts easier to read and understand. It’s important to make 
formatting consistent so it creates a reliable visual language for the code.

Line Length
In order to improve readability and to display properly in small terminal windows, line 
length should be limited to 80 characters. Line continuation characters should be used to 
break long lines, with each subsequent line indented one level from the first. For 
example:

Coding Standards Part 1: Our Own  199



printf "A really long string follows here: %s\n" \
  "Some really, really, really long string."

Indentation
Indention should be done with spaces and never with tab characters. Most text editors can
be set to use spaces for tabbing. In order for the maximum number of characters to be 
included on each line, each level of indentation should be 2 spaces.

Constant, Variable and Function Names
Constant names should be written in all caps. Variable and function names should be 
written in all lowercase. When a constant or variable name consists of multiple words, 
underscore characters should be used as the separator. Camel case (“camelCase”) should 
be avoided as it makes people think we’re one of those snooty Java programmers just 
learning to write shell scripts ;-)

Long Command Option Names
When using less common commands with multiple options (or more common commands 
with less common options), it is sometimes best to use the long form option names and 
split the option list across multiple lines.
# Use long option names to improve readability

rsync \
  --archive \
  --delete-excluded \
  --rsh=ssh \
  --one-file-system \
  --relative \
  --include-from="$INCLUDE_FILE" \
  --exclude-from="$EXCLUDE_FILE" \
  "$SOURCE" "$DESTINATION"

Pipelines
Pipelines should be formatted for maximum clarity. If a pipeline will fit on one line 
cleanly, it should be written that way. Otherwise, pipelines should be broken into multiple
lines with one pipeline element per line.
# Short pipeline on one line

command1 | command2

# Long pipeline on multiple lines

command1 \
  | command2 \
  | command3 \
  | command4

200  Coding Standards Part 1: Our Own



Compound Commands
Here are the recommended formatting styles for compound commands;
# 'then' should appear on the same line as 'if'

if [[ -r ~/.bashrc ]]; then
  echo ".bashrc is readable."
else
  echo ".bashrc is not readable." >&2
  exit 1
fi

# Likewise, 'do' should appear on the same line as
# the 'while', 'until', and 'for' commands

while [[ -z "$str" ]]; do
  command1
  command2
done

for i in 1 2 3 4 5; do
  command1
  command2
done

# In a case statement, simple one-line commands can be
# formatted this way:

case s in
  1|one)
    command1 ;;
  2|two)
    command2 ;;
  3|three)
    command3 ;;
  *)
    command4 ;;
esac

# Multiple commands should be formatted this way

case s in
  1|one)
    command1
    command2
    ;;
  2|two)
    command3
    command4
    ;;
  3|three)
    command5
    command6
    ;;
  *)
    command7
    ;;
esac

# Logical compound commands using && and ||

Coding Standards Part 1: Our Own  201



command1 && short_command
command2 \
  || long_command "$param1" "$param2" "$param3"

Coding Practices
In order to achieve our goal of writing robust, easily maintained scripts, our coding 
standard recommends the following coding practices.

Commenting
Good code commenting is vital for script maintenance. The purpose of commenting to is 
to explain vital facts about a program. If a script is to have any durability, we must 
anticipate that someone (even if it’s just the author) will revisit the script at a later date 
and will need a refresher on how the script works. Do not comment code that is obvious 
and easily understood; rather, explain the difficult to understand parts. Rule of thumb: the
more time a chunk of code takes to design and write, the more commenting it will likely 
need to explain it.

Function libraries are a special case. Each function in a library should be preceded by a 
comment block that documents its purpose and its positional parameters.

A common type of comment points to where future additions and changes are needed. 
These are called “todo” comments and are typically written like this:
# TODO Fix this routine so it can do this better

These comments begin with the string TODO so they can be found easily using a text 
editor’s search feature.

Shell Builtins vs. External Programs
Where possible, use bash builtins rather than external commands. For example, the 
basename and dirname programs can be replaced by parameter expansions to strip 
leading or trailing strings from pathnames. Compared to external programs, shell builtins 
use fewer resources and execute much faster.

Variable Expansion and Quoting
Double quotes must be used to manage word splitting during parameter expansion. This 
is particularly important when working with filenames. Assume that every variable, 
parameter expansion, and command substitution may contain embedded spaces, 
newlines, etc. There are situations where quoting is not needed (for example, within 
[[ ... ]]) but we use double quotes anyway, because it doesn’t hurt anything and it’s 
easier to always quote variables than remembering all the special cases where it is not 
required.
a="$var"

202  Coding Standards Part 1: Our Own



b="$1"
c="$(command1)"
command2 "$file1" "$file2"
[[ -z "$str" ]] || exit 1

Contrary to some other coding standards, brace delimiting variables is required only 
when needed to prevent ambiguity during expansion:
a="Compat"
port="bably condit"
echo "${a}bility is pro${port}ional to desire."

Pathname Expansion and Wildcards
Since pathnames in Unix-like systems can contain any character except / and NULL, we 
need to take special precautions during expansion.
# To prevent filesnames beginning with `-` from being interpreted
# as command options, always do this:
command1 ./*.txt

# Not this:
command1 *.txt

Here is a snippet of code that will prepend ./ to a pathname when needed.
# This will sanitize '$pathname'
[[ "$pathname" =~ ^[./].*$ ]] || pathname="./$pathname"

[[ … ]] vs. [ … ]
Unless a script must run in a POSIX-compatible environment, use [[ ... ]] rather than 
[ ... ] when performing conditional tests. Unlike the [ and test bash builtins, [[ ...
]] is part of shell syntax, not a command. This means it can handle its internal elements 
(test conditions) in a more robust fashion, as pathname expansion and word splitting do 
not occur. Also, [[ ... ]] adds some additional capabilities such as =~ to perform 
regular expression tests.

Use (( … )) for Integer Arithmetic
Use (( ... )) in place of let or exper when performing integer arithmetic. The bash 
let builtin works in a similar way as (( ...)) but its arguments often require careful 
quoting. exper is an external program and many times slower than the shell.
# Use (( ... )) rather than [[ ... ]] when evaluating integers
if (( i > 1 )); then
  ...
fi

while (( y == 5 )); do
  ...
done

# Perform arithmetic assignment
(( y = x * 2 ))

Coding Standards Part 1: Our Own  203



# Perform expansion on an arithmetic calculation
echo $(( i * 7 ))

printf vs. echo
In some cases, it is preferable to use printf over echo when parameter expansions are 
being output. This is particularly true when expanding pathnames. Since pathnames can 
contain nearly any character, expansions could result in command options, command 
sequences, etc.

Error Handling
The most important thing for a script to do, besides getting its work done, is making sure 
it’s getting its work done successfully. To do this, we have to handle errors.

1. Anticipate errors. When designing a script, it is important to consider possible 
points of failure. Before the script starts, are all the necessary external programs 
actually installed on the system? Do the expected files and directories exist and 
have the required permissions for the script to operate? What happens the first time 
a script runs versus later invocations? The beginning of the program should include
tests to ensure that all necessary resources are available.

2. Do no harm. If the script must do anything destructive, for example, deleting files, 
we must make sure that the script does only the things it is supposed to do. Test for 
all required conditions prior to doing anything destructive.

3. Report errors and provide some clues. When an error is detected, we must report 
the error and terminate the script if necessary. All error messages must be sent to 
standard error and should include useful information to aid debugging. A good way 
to do this is to use an error message function such as the one below:
 error_exit() {

   local error_message="$1"

   printf "%s\n" "${PROGNAME}: ${error_message:-"Unknown Error"}" >&2
   exit 1
 }

We can call the error message function to report an error like this:
 command1 || error_exit "command1 failed in line $LINENO"

The shell variable LINENO is included in the error message passed to the function. 
This will contain the line number where the error occurred.

4. Clean up the mess. When we handle an error we need to make sure that we leave 
the system in good shape. If the script creates temporary files or performs some 

204  Coding Standards Part 1: Our Own



operation that could leave the system in an undesirable state, provide a way to 
return the system to useful condition before the script exits.

Bash offers a setting that will to attempt handle errors automatically, which simply means
that with this setting enabled, a script will terminate if any command (with some 
necessary exceptions) returns a non-zero exit status. To invoke this setting, we place the 
command set -e near the beginning of the script. Several bash coding standards insist 
on using this feature along with a couple of related settings, set -u which terminates a 
script if there is an uninitialized variable, and set -o PIPEFAIL which causes script 
termination if any element in a pipeline fails.

Using these features is not recommended. It is better to design proper error handling and 
not rely on set -e as a substitute for good coding practices.

The Bash FAQ #105 provides the following opinion on this:

set -e was an attempt to add “automatic error detection” to the shell. Its goal 
was to cause the shell to abort any time an error occurred, so you don’t have to 
put || exit 1 after each important command.

That goal is non-trivial, because many commands intentionally return non-zero. 
For example,

if [ -d /foo ]; then ...; else ...; fi

Clearly we don’t want to abort when the [ -d /foo ] command returns non-zero
(because the directory does not exist) – our script wants to handle that in the else 
part. So the implementors decided to make a bunch of special rules, like 
“commands that are part of an if test are immune”, or “commands in a pipeline, 
other than the last one, are immune.”

These rules are extremely convoluted, and they still fail to catch even some 
remarkably simple cases. Even worse, the rules change from one Bash version to 
another, as bash attempts to track the extremely slippery POSIX definition of this 
“feature.” When a subshell is involved, it gets worse still – the behavior changes 
depending on whether bash is invoked in POSIX mode.

Command Line Options and Arguments
When possible, scripts should support both short and long option names. For example, a 
“help” feature should be supported by both the -h and --help options. Dual options can 
be implemented with code such as this:
# Parse command line
while [[ -n "$1" ]]; do
  case $1 in
    -h | --help)

Coding Standards Part 1: Our Own  205



      help_message
      graceful_exit
      ;;
    -q | --quiet)
      quiet_mode=yes
      ;;
    -s | --root)
      root_mode=yes
      ;;
    --* | -*)
      usage > &2; error_exit "Unknown option $1"
      ;;
    *)
      tmp_script="$1"
      break
      ;;
  esac
  shift
done

Assist the User
Speaking of “help” options, all scripts should include one, even if the script supports no 
other options or arguments. A help message should include the script name and version 
number, a brief description of the script’s purpose (as it might appear on a man page), and
a usage message that describes the supported options and arguments. A separate usage 
function can be used for both the help message and as part of an error message when the 
script is invoked incorrectly. Here are some example usage and help functions:
# Usage message - separate lines for mutually exclusive options
# the way many man pages do it.
usage() {
  printf "%s\n" \
    "Usage: ${PROGNAME} [-h|--help ]"
  printf "%s\n" \
    "       ${PROGNAME} [-q|--quiet] [-s|--root] [script]"
}

help_message() {
  cat <<- _EOF_
  ${PROGNAME} ${VERSION}
  Bash shell script template generator.

  $(usage)

  Options:

  -h, --help    Display this help message and exit.
  -q, --quiet   Quiet mode. No prompting. Outputs default script.
  -s, --root    Output script requires root privileges to run.

_EOF_
}

206  Coding Standards Part 1: Our Own



Traps
In addition to a normal exit and an error exit, a script can also terminate when it receives 
a signal. For some scripts, this is an important issue because if they exit in an unexpected 
manner, they may leave the system in an undesirable state. To avoid this problem, we 
include traps to intercept signals and perform cleanup procedures before the scripts exits. 
The three signals of greatest importance are SIGINT (which occurs when Ctrl-c is typed) 
and SIGTERM (which occurs when the system is shut down or rebooted) and SIGHUP 
(when a terminal connection is terminated). Below is a set of traps to manage the 
SIGINT, SIGTERM, and SIGHUP signals.
# Trap signals
trap "signal_exit TERM" TERM HUP
trap "signal_exit INT"  INT

Due to the syntactic limitations of the trap builtin, it is best to use a separate function to 
act on the trapped signal. Below is a function that handles the signal exit.
signal_exit() { # Handle trapped signals

  local signal="$1"

  case "$signal" in
    INT)
      error_exit "Program interrupted by user"
      ;;
    TERM)
      printf "\n%s\n" "$PROGNAME: Program terminated" >&2
      graceful_exit
      ;;
    *)
      error_exit "$PROGNAME: Terminating on unknown signal"
      ;;
  esac
}

We use a case statement to provide different outcomes depending on the signal received. 
In this example, we also see a call to a graceful_exit function that could provide 
needed cleanup before the script terminates.

Temporary Files
Wherever possible, temporary files should be avoided. In many cases, process 
substitution can be used instead. Doing it this way will reduce file clutter, run faster, and 
in some cases be more secure.
# Rather than this:
command1 > "$TEMPFILE"
.
.
.
command2 < "$TEMPFILE"

# Consider this:
command2 < <(command1)

Coding Standards Part 1: Our Own  207



If temporary files cannot be avoided, care must be taken to create them safely. We must 
consider, for example, what happens if there is more than one instance of the script 
running at the same time. For security reasons, if a temporary file is placed in a world-
writable directory (such as /tmp) we must ensure the file name is unpredictable. A good 
way to create temporary file is by using the mktemp command as follows:
TEMPFILE="$(mktemp /tmp/"$PROGNAME".$$.XXXXXXXXX)"

In this example, a temporary file will be created in the /tmp directory with the name 
consisting of the script’s name followed by its process ID (PID) and 10 random 
characters.

For temporary files belonging to a regular user, the /tmp directory should be avoided in 
favor of the user’s home directory.

ShellCheck is Your Friend
There is a program available in most distribution repositories called shellcheck that 
performs analysis of shell scripts and will detect many kinds of faults and poor scripting 
practices. It is well worth using it to check the quality of scripts. To use it with a script 
that has a shebang, we simply do this:
shellcheck my_script

ShellCheck will automatically detect which shell dialect to use based on the shebang. For
shell script code that does not contain a shebang, such as function libraries, we use 
ShellCheck this way:
shellcheck -s bash my_library

Use the -s option to specify the desired shell dialect. More information about ShellCheck
can be found at its website http://www.shellcheck.net.

Summing Up
We covered a lot of ground in this adventure, specifying a complete set of technical and 
stylistic features. Using this coding standard, we can now write some serious production-
quality scripts. However, the complexity of this standard does impose some cost in terms 
of development time and effort.

In Part 2, we will examine a program from LinuxCommand.org called new_script, a 
bash script template generator that will greatly facilitate writing scripts that conform to 
our new coding standard.

Further Reading
Here are some links to shell scripting coding standards. They range from the lax to the 
obsessive. Reading them all is a good idea in order to get a sense of the community’s 

208  Coding Standards Part 1: Our Own

http://www.shellcheck.net/


collective wisdom. Many are not bash-specific and some emphasize multi-shell 
portability, not necessarily a useful goal.

• The Google Shell Style Guide The coding standard for scripts developed at Google. 
It’s among the most sensible standards. 
https://google.github.io/styleguide/shellguide.html

• Anyone Can Write Good Bash (with a little effort) 
https://blog.yossarian.net/2020/01/23/Anybody-can-write-good-bash-with-a-little-
effort

• Some Bash coding conventions and good practices https://github.com/icy/bash-
coding-style

• Bash Style Guide and Coding Standard 
https://lug.fh-swf.de/vim/vim-bash/StyleGuideShell.en.pdf

• Shell Script Standards https://engineering.vokal.io/Systems/sh.md.html

• Unix/Linux Shell Script Programming Conventions and Style 
http://teaching.idallen.com/cst8177/13w/notes/000_script_style.html

• Scripting Standards http://ronaldbradford.com/blog/scripting-standards/

Pages with advice on coding practices. Some have conflicting advice so caveat emptor.

• Make Linux/Unix Script Portable With #!/usr/bin/env As a Shebang 
https://www.cyberciti.biz/tips/finding-bash-perl-python-portably-using-env.html

• Good practices for writing shell scripts http://www.yoone.eu/articles/2-good-
practices-for-writing-shell-scripts.html

• Why is printf better than echo? 
https://unix.stackexchange.com/questions/65803/why-is-printf-better-than-echo

• Why doesn’t set -e (or set -o errexit, or trap ERR) do what I expected? 
http://mywiki.wooledge.org/BashFAQ/105

• Bash: Error handling https://fvue.nl/wiki/Bash:_Error_handling

• Writing Robust Bash Shell Scripts https://www.davidpashley.com/articles/writing-
robust-shell-scripts/

• Filenames and Pathnames in Shell: How to do it Correctly A good page full of 
cautionary tales and advice on dealing with “funny” file and path names. A serious 
problem in Unix-like systems. Highly recommended. 
https://dwheeler.com/essays/filenames-in-shell.html

Coding Standards Part 1: Our Own  209

https://dwheeler.com/essays/filenames-in-shell.html
https://www.davidpashley.com/articles/writing-robust-shell-scripts/
https://www.davidpashley.com/articles/writing-robust-shell-scripts/
https://fvue.nl/wiki/Bash:_Error_handling
http://mywiki.wooledge.org/BashFAQ/105
https://unix.stackexchange.com/questions/65803/why-is-printf-better-than-echo
http://www.yoone.eu/articles/2-good-practices-for-writing-shell-scripts.html
http://www.yoone.eu/articles/2-good-practices-for-writing-shell-scripts.html
https://www.cyberciti.biz/tips/finding-bash-perl-python-portably-using-env.html
http://ronaldbradford.com/blog/scripting-standards/
http://teaching.idallen.com/cst8177/13w/notes/000_script_style.html
https://engineering.vokal.io/Systems/sh.md.html
https://lug.fh-swf.de/vim/vim-bash/StyleGuideShell.en.pdf
https://github.com/icy/bash-coding-style
https://github.com/icy/bash-coding-style
https://blog.yossarian.net/2020/01/23/Anybody-can-write-good-bash-with-a-little-effort
https://blog.yossarian.net/2020/01/23/Anybody-can-write-good-bash-with-a-little-effort
https://google.github.io/styleguide/shellguide.html


• 1963 Timesharing: A Solution to Computer Bottlenecks This YouTube video from 
MIT provides some historical perspective on the invention of interactive systems 
and the transition away from batch processing. The concepts presented here are still
the basis of all modern computing. https://youtu.be/Q07PhW5sCEk

210  Coding Standards Part 1: Our Own

https://youtu.be/Q07PhW5sCEk


13 Coding Standards Part 2: new_script
In Part 1, we created a coding standard that will assist us when writing serious, 
production-quality scripts. The only problem is the standard is rather complicated, and 
writing a script that conforms to it can get a bit tedious. Any time we want to write a 
“good” script, we have to do a lot of rote, mechanical work to include such things as error
handlers, traps, help message functions, etc.

To overcome this, many programmers rely on script templates that contain much of this 
routine coding. In this adventure, we’re going to look at a program called new_script 
from LinuxCommand.org that creates templates for bash scripts. Unlike static templates, 
new_script custom generates templates that include usage and help messages, as well as
a parser for the script’s desired command line options and arguments. Using new_script 
saves a lot of time and effort and helps us make even the most casual script a well-crafted
and robust program.

Installing new_script
To install new_script, we download it from LinuxCommand.org, move it to a directory 
in our PATH, and set it to be executable.
me@linuxbox:~$ curl -O http://linuxcommand.org/new_script.bash
me@linuxbox:~$ mv new_script.bash ~/bin/new_script
me@linuxbox:~$ chmod +x ~/bin/new_script

After installing it, we can test it this way:
me@linuxbox:~$ new_script --help

If the installation was successful, we will see the help message:
new_script 3.5.3
Bash shell script template generator.

Usage: new_script [-h|--help ]
       new_script [-q|--quiet] [-s|--root] [script]

  Options:

  -h, --help    Display this help message and exit.
  -q, --quiet   Quiet mode. No prompting. Outputs default script.
  -s, --root    Output script requires root privileges to run.

Options and Arguments
Normally, new_script is run without options. It will prompt the user for a variety of 
information that it will use to construct the script template. If an output script file name is
not specified, the user will be prompted for one. For some special use cases, the 
following options are supported:

Coding Standards Part 2: new_script  211



• -h, –help The help option displays the help message we saw above. The help option
is mutually exclusive with the other new_script options and after the help message
is displayed, new_script exits.

• -q, –quiet The quiet option causes new_script to become non-interactive and to 
output a base template without customization. In this mode, new_script will 
output its script template to standard output if no output script file is specified.

• -s, –root The superuser option adds a routine to the template that requires the script
to be run by the superuser. If a non-privileged user attempts to run the resulting 
script, it will display an error message and terminate.

Creating Our First Template
Let’s make a template to demonstrate how new_script works and what it can do. First, 
we’ll launch new_script and give it the name of a script we want to create.
me@linuxbox:~$ new_script new_script-demo

------------------------------------------------------------------------
** Welcome to new_script version 3.5.3 **
------------------------------------------------------------------------

File 'new_script-demo' exists. Overwrite [y/n] > y

We’ll be greeted with a welcome message. If the script already exists, we are prompted to
overwrite. If we had not specified a script file name, we would be prompted for one.
------------------------------------------------------------------------
** Comment Block **

The purpose is a one line description of what the script does.
------------------------------------------------------------------------
The purpose of the script is to: > demonstrate the new_script template

------------------------------------------------------------------------
The script may be licensed in one of two ways:
1. All rights reserved (default) or
2. GNU GPL version 3 (preferred).
------------------------------------------------------------------------

Include GPL license header [y/n]? > y

The first information new_script asks for are the purpose of the script and how it is 
licensed. Later, when we examine the finished template below, we’ll see that new_script
figures out the author’s name and email address, as well as the copyright date.
------------------------------------------------------------------------
** Privileges **

The template may optionally include code that will prevent it from
running if the user does not have superuser (root) privileges.
------------------------------------------------------------------------

212  Coding Standards Part 2: new_script



Does this script require superuser privileges [y/n]? > n

If we need to make this script usable only by the superuser, we set that next.
------------------------------------------------------------------------
** Command Line Options **

The generated template supports both short name (1 character), and long
name (1 word) options. All options must have a short name. Long names
are optional. The options 'h' and 'help' are provided automatically.

Further, each option may have a single argument. Argument names must
be valid variable names.

Descriptions for options and option arguments should be short (less
than 1 line) and will appear in the template's comment block and
help_message.
------------------------------------------------------------------------

Does this script support command-line options [y/n]? > y

Now we get to the fun part; defining the command line options. If we answer no to this 
question, new_script will write the template and exit.

As we respond to the next set of prompts, remember that we are building a help message 
(and a parser) that will resemble the new_script help message, so use that as a guide for 
context. Keep responses clear and concise.
Option 1:
  Enter short option name [a-z] (Enter to end) -> a
  Description of option ------------------------> the first option named 'a'
  Enter long option name (optional) ------------> option_a
  Enter option argument (if any) ---------------> 

Option 2:
  Enter short option name [a-z] (Enter to end) -> b
  Description of option ------------------------> the second option named 'b'
  Enter long option name (optional) ------------> option_b
  Enter option argument (if any) ---------------> b_argument
  Description of argument (if any)--------------> argument for option 'b'

Option 3:
  Enter short option name [a-z] (Enter to end) -> 

By entering nothing at the short option prompt, new_script ends the input of the 
command options and writes the template. We’re done!

A note about short option names: new_script will accept any value, not just lowercase 
letters. This includes uppercase letters, numerals, etc. Use good judgment.

A note about long option names and option arguments: long option names and option 
arguments must be valid bash variable names. If they are not, new_script will attempt 
correct them, If there are embedded spaces, they will be replaced with underscores. 
Anything else will cause no_script to replace the name with a calculated default value 
based on the short option name.

Coding Standards Part 2: new_script  213



Looking at the Template
Here we see a numbered listing of the finished template.
  1  #!/usr/bin/env bash
  2  # ---------------------------------------------------------------------
  3  # new_script-demo - Demonstrate the new_script template
     
  4  # Copyright 2021, Linux User <me@linuxbox.example.com>
  5    
  6  # This program is free software: you can redistribute it and/or modify
  7  # it under the terms of the GNU General Public License as published by
  8  # the Free Software Foundation, either version 3 of the License, or
  9  # (at your option) any later version.
     
 10  # This program is distributed in the hope that it will be useful,
 11  # but WITHOUT ANY WARRANTY; without even the implied warranty of
 12  # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 13  # GNU General Public License at <http://www.gnu.org/licenses/> for
 14  # more details.
     
 15  # Usage: new_script-demo [-h|--help]
 16  #        new_script-demo [-a|--option_a] [-b|--option_b b_argument]
     
 17  # Revision history:
 18  # 2021-05-05 Created by new_script ver. 3.5.3
 19  # ---------------------------------------------------------------------
     

The comment block is complete with license, usage, and revision history. Notice how the 
first letter of the purpose has been capitalized and the author’s name and email address 
have been calculated. new_script gets the author’s name from the /etc/password file. 
If the REPLYTO environment variable is set, it supplies the email address (this was 
common with old-timey email programs); otherwise the email address will be expanded 
from $USER@$(hostname). To define the REPLYTO variable, we just add it to our 
~/.bashrc file. For example:
export REPLYTO=me@linuxbox.example.com

Our script template continues with the constants and functions:
 20  PROGNAME=${0##*/}
 21  VERSION="0.1"
 22  LIBS=     # Insert pathnames of required external shell libraries here
     

The global constants appear next, with the program name (derived from $0) and the 
version number. The LIBS constant should be set to contain a space-delimited list (in 
double quotes of course) of any files to be sourced. Note: the way the template 
implements this feature requires that library pathnames do not contain spaces. Besides the
template not working, including embedded spaces in a library name would be in 
extremely poor taste.
 23  clean_up() { # Perform pre-exit housekeeping
 24    return
 25  }
     

214  Coding Standards Part 2: new_script



 26  error_exit() {
     
 27    local error_message="$1"
     
 28    printf "%s: %s\n" "$PROGNAME" "${error_message:-"Unknown Error"}" >&2
 29    clean_up
 30    exit 1
 31  }
     
 32  graceful_exit() {
 33    clean_up
 34    exit
 35  }
     
 36  signal_exit() { # Handle trapped signals
     
 37    local signal="$1"
     
 38    case "$signal" in
 39      INT)
 40        error_exit "Program interrupted by user" ;;
 41      TERM)
 42        error_exit "Program terminated" ;;
 43      *)
 44        error_exit "Terminating on unknown signal" ;;
 45    esac
 46  }

The first group of functions handles program termination. The clean_up function should 
include the code for any housekeeping tasks needed before the script exits. This function 
is called by all the other exit functions to ensure an orderly termination.
 47  load_libraries() { # Load external shell libraries
     
 48    local i
     
 49    for i in $LIBS; do
 50      if [[ -r "$i" ]]; then
 51        source "$i" || error_exit "Library '$i' contains errors."
 52      else
 53        error_exit "Required library '$i' not found."
 54      fi
 55    done
 56  }
     

The load_libraries function loops through the contents of the LIBS constant and 
sources each file. If any file is missing or contains errors, this function will terminate the 
script with an error.
 57  usage() {
 58    printf "%s\n" "Usage: ${PROGNAME} [-h|--help]"
 59    printf "%s\n" \
         "       ${PROGNAME} [-a|--option_a] [-b|--option_b b_argument]"
 60  }
     
 61  help_message() {
 62    cat <<- _EOF_
 63  $PROGNAME ver. $VERSION
 64  Demonstrate the new_script template

Coding Standards Part 2: new_script  215



     
 65  $(usage)
     
 66    Options:
 67    -h, --help                  Display this help message and exit.
 68    -a, --option_a              The first option named 'a'
 69    -b, --option_b b_argument   The second option named 'b'
 70      Where 'b_argument' is the argument for option 'b'.
     
 71  _EOF_
 72    return
 73  }

The usage and help_message functions are based on the information we supplied. 
Notice how the help message is neatly formatted and the option descriptions are 
capitalized as needed.
 74  # Trap signals
 75  trap "signal_exit TERM" TERM HUP
 76  trap "signal_exit INT"  INT
     
 77  load_libraries

The last tasks involved with set up are the signal traps and calling the function to source 
the external libraries, if there are any.

Next comes the parser, again based on our command options.
 78  # Parse command-line
 79  while [[ -n "$1" ]]; do
 80    case "$1" in
 81      -h | --help)
 82        help_message
 83        graceful_exit
 84        ;;
 85      -a | --option_a)
 86        echo "the first option named 'a'"
 87        ;;
 88      -b | --option_b)
 89        echo "the second option named 'b'"
 90        shift; b_argument="$1"
 91        echo "b_argument == $b_argument"
 92        ;;
 93      --* | -*)
 94        usage >&2
 95        error_exit "Unknown option $1"
 96        ;;
 97      *)
 98        printf "Processing argument %s...\n" "$1"
 99        ;;
100    esac
101    shift
102  done

The parser detects each of our specified options and provides a simple stub for our actual 
code. One feature of the parser is that positional parameters that appear after the options 
are assumed to be arguments to the script so this template is ready to handle them even if 
the script has no options.

216  Coding Standards Part 2: new_script



103  # Main logic
   
104  graceful_exit

We come to the end of the template where the main logic is located. Since this script 
doesn’t do anything yet, we simply call the graceful_exit function so that we, well, 
exit gracefully.

Testing the Template
The finished template is a functional (and correct!) script. We can test it. First the help 
function:
me@linuxbox:~$ ./new_script-demo --help
new_script-demo ver. 0.1
Demonstrate the new_script template

Usage: new_script-demo [-h|--help]
       new_script-demo [-a|--option_a] [-b|--option_b b_argument]

  Options:
  -h, --help                  Display this help message and exit.
  -a, --option_a              The first option named 'a'
  -b, --option_b b_argument   The second option named 'b'
    Where 'b_argument' is the argument for option 'b'.

me@linuxbox:~$

With no options or arguments, the template produces no output.
me@linuxbox:~$ ./new_script-demo
me@linuxbox:~$

The template displays informative messages as it processes the options and arguments.
me@linuxbox:~$ ./new_script-domo -a
the first option named 'a'
me@linuxbox:~$ ./new_script-demo -b test
the second option named 'b'
b_argument == test
me@linuxbox:~$ ./new_script-demo ./*
Processing argument ./bin...
Processing argument ./Desktop...
Processing argument ./Disk_Images...
Processing argument ./Documents...
Processing argument ./Downloads...
    .
    .
    .

Summing Up
Using new_script saves a lot of time and effort. It’s easy to use and it produces high 
quality script templates. Once a programmer decides on a script’s options and arguments, 
they can use new_script to quickly produce a working script and add feature after 
feature until everything is fully implemented.

Coding Standards Part 2: new_script  217



Feel free to examine the new_script code. Parts of it are exciting.

Further Reading
There are many bash shell script “templates” available on the Internet. A Google search 
for “bash script template” will locate some. Many are just small code snippets or 
suggestions on coding standards. Here are a few interesting ones worth reading:

• Boilerpalte Shell Script Template https://natelandau.com/boilerplate-shell-script-
template/

• Another Bash Script Template https://jonlabelle.com/snippets/view/shell/another-
bash-script-template

• Basic script template for every bash script https://coderwall.com/p/koixia/logging-
mini-  framework-snippet-for-every-shell-script  

• Argbash documentation A template generator that works from a configuration file 
rather than interactively. https://argbash.readthedocs.io/en/latest/

218  Coding Standards Part 2: new_script

https://argbash.readthedocs.io/en/latest/
https://coderwall.com/p/koixia/logging-mini-framework-snippet-for-every-shell-script
https://coderwall.com/p/koixia/logging-mini-framework-snippet-for-every-shell-script
https://coderwall.com/p/koixia/logging-mini-framework-snippet-for-every-shell-script
https://jonlabelle.com/snippets/view/shell/another-bash-script-template
https://jonlabelle.com/snippets/view/shell/another-bash-script-template
https://natelandau.com/boilerplate-shell-script-template/
https://natelandau.com/boilerplate-shell-script-template/


14 SQL
Okay kids, gird your grid for a big one.

The world as we know it is powered by data. Data, in turn, is stored in databases. Most 
everything we use computers for involves using data stored in some kind of database. 
When we talk about storing large amounts of data, we often mean relational database 
management systems (RDBMS). Banks, insurance companies, most every accounting 
system, and many, many websites use relational databases to store and organize their 
data.

The idea of relational data storage is generally credited to English computer scientist and 
IBM researcher E. F. Cobb, who proposed it in a paper in 1970. In the years that 
followed, a number of software companies built relational database systems with varying 
degrees of success. Around 1973, IBM developed a simplified and flexible method of 
managing relational databases called Structured Query Language (SQL, often 
pronounced “sequel”). Today the combination of RDBMS and SQL is a huge industry, 
generating many billions of dollars every year.

Relational databases are important to the history of Linux as well. It was the availability 
of open source database programs (such as MySQL) and web servers (most notably, 
Apache) that led to an explosion of Linux adoption in the early days of the world wide 
web.

In this adventure, we’re going to study the fundamentals of relational databases and use a 
popular command line program to create and manage a database of our own. The AWK 
adventure is a suggested prerequisite.

A Little Theory: Tables, Schemas, and Keys
Before we can delve into SQL we have to look at what relational databases are and how 
they work.

Tables
Simply put, a relational database is one or more tables containing columns and rows. 
Technically, the columns are known as attributes and the rows as tuples, but most often 
they are simply called columns and rows. In many ways, a table resembles the familiar 
spreadsheet. In fact, spreadsheet programs are often used to prepare and edit database 
tables. Each column contains data of a consistent type, for example, one column might 
consist of integers and another column strings. A table can contain any number of rows.

SQL  219



Schemas
The design of a database is called its schema and it can be simple, containing just a single
table or two, or it can be complex, containing many tables with complex 
interrelationships between them.

Let’s imagine a database for a bookstore consisting of three tables. The first is called 
Customers, the second is called Items, and the third is called Sales. The Customers 
table will have multiple rows with each row containing information about one customer. 
The columns include a customer number, first and last names, and the customer’s 
address. Here is such a table with just some made-up names:
Cust First   Last     Street                City        ST
---- ------- -------- --------------------- ----------- --
0001 Richard Stollman 1 Outonthe Street     Boston      MA
0002 Eric    Roymond  2 Amendment Road      Bunker Hill PA
0003 Bruce   Porens   420 Middleville Drive Anytown     US

The Items table lists our books and contains the item number, title, author, and price.
Item Title                                  Author        Price
---- -------------------------------------- ------------- -----
1001 Winning Friends and Influencing People Dale Carnegie 14.95
1002 The Communist Manifesto                Marx & Engels 00.00
1003 Atlas Shrugged                         Ayn Rand      99.99

As we go about selling items in our imaginary bookstore, we generate rows in the Sales 
table. Each sale generates a row containing the customer number, date and time of the 
sale, the item number, the quantity sold, and the total amount of the sale.
Cust Date_Time    Item Quan Total
---- ------------ ---- ---- ------
0002 202006150931 1003    1  99.99
0001 202006151108 1002    1   0.00
0003 202006151820 1001   10 149.50

Keys
Now we might be wondering what the Cust and Item columns are for. They serve as 
keys. Keys are values that serve to uniquely identify a table row and to facilitate 
interrelationships between tables. Keys have some special properties. They must be both 
unique (that is, they can appear only once in a table and specifically identify a row) and 
they must also be immutable (they can never change). If they can’t meet these 
requirements, they cannot be keys. Some database implementations have methods of 
enforcing these requirements during table creation and keys can be formally specified. In 
the case of our bookstore database, the Cust column contains the keys for the Customers 
table and the Item column contains the keys for the Items table.

Knowing this about keys, we can now understand why the Sales table works the way it 
does. We can see for example that row 1 of the Sales table tells us that customer 0002 
purchased 1 copy of item 1003 for $99.99. So why do we need special values for the 

220  SQL



keys? Why not, for instance, just use the customer’s name as the key? It’s because we 
can’t guarantee that the name won’t change, or that two people might have the same 
name. We can guarantee that an arbitrarily assigned value like our customer number is 
unique and immutable.

Database Engines/Servers
There are a number of database servers available for Linux. The two most prominent are 
MySQL (and its fork MariaDB) and PostgreSQL. These database servers implement 
client/server architecture, a concept that became a hot topic in the 1990s. Database 
servers of this type run as server processes and clients connect to them over a network 
connection and send SQL statements for the server to carry out. The results of the 
database operations are returned to the client program for further processing and 
presentation. Many web sites use this architecture with a web server sending SQL 
statements to a separate database server to dynamically create web pages as needed. The 
famous LAMP stack consisting of Linux, Apache web server, MySQL, and PHP powered 
much of the early web.

For purposes of this adventure, setting up database servers such as MySQL and 
PostgreSQL is too complicated to cover here since, among other things, they support 
multiple concurrent users and their attendant security controls. It’s more than we need for
just learning SQL.

sqlite3
The database server we will be using is SQLite. SQLite is a library that can be used with 
applications to provide a high-level of SQL functionality. It’s very popular with the 
embedded systems crowd. It saves application developers the trouble of writing custom 
solutions to their data storage and management tasks. In addition to the library, SQLite 
provides a command line tool for directly interacting with SQLite databases. Also, since 
it accepts SQL from standard input (as well as it own command line interface) and sends 
its results to standard output, it’s ideal for use in our shell scripts.

SQLite is available from most Linux distribution repositories. Installation is easy, for 
example:
me@linuxbox:~$ sudo apt install sqlite3

Building a Playground
Let’s build a playground and play with some real data. On the LinuxCommand.org site 
there is a archive we can download that will do the trick.
me@linuxbox:~$ cd
me@linuxbox:~$ curl -c http://linuxcommand.org/adventure-sql.tgz
me@linuxbox:~$ tar xzf adventure-sql.tgz
me@linuxbox:~$ cd adventure-sql

SQL  221



Extracting the .tgz file will produce the playground directory containing the data sets, 
some demonstration code, and some helpful tools. The data sets we will be working with 
contain the listings of installed packages on an Ubuntu 18.04 system. This will include 
the name of packages, a short description of each one, a list of files contained in each 
package, and their sizes.
me@linuxbox:~/adventure-sql$ ls

All the files are human-readable text, so feel free to give them a look. The data sets in the 
archive are the .tsv files. These are tab-separated value files. The first one is the 
package_descriptions.tsv file. This contains two columns of data; a package name 
and a package description. The second file, named package_files.txv, has three 
columns: a package name, the name of a file installed by the package and the size of the 
file.

Starting sqlite3
To launch SQLite, we simply issue the command sqlite3 followed optionally by the 
name of a file to hold our database of tables. If we do not supply a file name, SQLite will 
create a temporary database in memory.
me@linuxbox:~/advemture-sql$ sqlite3
SQLite version 3.22.0 2018-01-22 18:45:57
Enter ".help" for usage hints.
Connected to a transient in-memory database.
Use ".open FILENAME" to reopen on a persistent database.
sqlite>

When loading is complete, SQLite will present a prompt where we can enter commands. 
Commands can be either SQL statements or dot commands that are used to control 
SQLite itself. To see a list of the available dot commands, we enter .help at the prompt.
sqlite> .help

There are only a few of the dot commands that will be of interest to us and they deal 
mainly with how output is formatted. To exit sqlite3, we enter the dot command .quit 
at the prompt.
sqlite> .quit

Though we can interact directly with the sqlite3 program using the sqlite> prompt, 
sqlite3 can also accept streams of dot commands and SQL statements through standard 
input. This is how SQLite is most often used.

Creating a Table and Inserting Our Data
To get started with our database, we need to first convert our .tsv files into a stream of 
SQL statements. Our database will initially consist of two tables. The first is named 
Package_Descriptions and the second is named Package_Files. To create the SQL 
stream for the Package_Descriptions table we will use the 
insert_Package_Descriptions.awk program supplied in the playground archive.

222  SQL



me@linuxbox:~/advemture-sql$ ./insert_Package_Descriptions.awk \
< package_descriptions.tsv > insert_Package_Descriptions.sql

Let’s take a look at the resulting SQL stream. We’ll use the head command to display the 
first few lines of the stream.
me@linuxbox:~/advemture-sql$ head insert_Package_Descriptions.sql
DROP TABLE IF EXISTS Package_Descriptions;
CREATE TABLE Package_Descriptions (
    package_name VARCHAR(60),
    description  VARCHAR(120)
);
BEGIN TRANSACTION;
INSERT INTO Package_Descriptions
     VALUES ( 'a2ps',
              'GNU a2ps - ''Anything to PostScript'' converter and pretty-prin
ter');
INSERT INTO Package_Descriptions
     VALUES ( 'accountsservice',
              'query and manipulate user account information');

And the last few lines using the tail command.
me@linuxbox:~/advemture-sql$ tail insert_Package_Descriptions.sql
     VALUES ( 'zlib1g:amd64',
              'compression library - runtime');
INSERT INTO Package_Descriptions
     VALUES ( 'zlib1g:i386',
              'compression library - runtime');
INSERT INTO Package_Descriptions
     VALUES ( 'zlib1g-dev:amd64',
              'compression library - development');
INSERT INTO Package_Descriptions
     VALUES ( 'zsh',
              'shell with lots of features');
INSERT INTO Package_Descriptions
     VALUES ( 'zsh-common',
              'architecture independent files for Zsh');
COMMIT;

As we can see, SQL is verbose and somewhat English-like. Convention dictates that 
language keywords be in uppercase; however it is not required. SQL is case insensitive. 
White space is not important, but is often used to make the SQL statements easier to read.
Statements can span multiple lines but don’t have to. Statements are terminated by a 
semicolon character. The SQL in this adventure is generally formatted in accordance with
the style guide written by Simon Holywell linked in the “Further Reading” section below.
Since some SQL can get quite complicated, visual neatness counts when writing code.

SQL supports two forms of commenting.
-- Single line comments are preceeded by 2 dashes

/* And multi-line comments are done in the
   style of the C programming language */

Before we go on, we need to digress for a moment to discuss SQL as a standard. While 
there are ANSI standards for SQL, every database server implements SQL differently. 
Each one has a slightly different dialect. The reason for this is partly historical; in the 

SQL  223



early days there weren’t any firm standards, and partly commercial. Each database 
vendor wanted to make it hard for customers to migrate to competing products so each 
vendor added unique extensions and features to the language to promote the dreaded 
“vendor lock-in” for their product. SQLite supports most of standard SQL (but not all of 
it) and it adds a few unique features.

Creating and Deleting Tables
The first 2 lines of our SQL stream deletes any existing table named 
Package_Descriptions and creates a new table with that name. The DROP TABLE 
statement deletes a table. The optional IF EXISTS clause is used to prevent errors if the 
table does not already exist. There are a lot of optional clauses in SQL. The CREATE 
TABLE statement defines a new table. As we can see, this table will have 2 columns. The 
first column, package_name is defined to be a variable length string up to 60 characters 
long. VARCHAR is one of the available data types we can define. Here are some of the 
common data types supported by SQL databases:

Data Type Description
INTEGER Integer
CHAR(n) Fixed length string
VARCHAR(n) Variable length string
NUMERIC Decimal numbers
REAL Floating point numbers
DATETIME Date and time values

Common SQL data types

Data Types
SQL databases support many types of data. Unfortunately, this varies by vendor. Even in 
cases where two databases share the same data type name, the actual meaning of the data 
type can differ. Data types in SQLite, unlike other SQL databases, are not rigidly fixed. 
Values in SQLite are dynamically typed. While SQLite allows many of the common data 
types found in other databases to be specified, it actually only supports 4 general types of 
data storage.

Data Type Description
INTEGER Signed integers using 1, 2, 3, 4, 6, or 8 bytes as needed
REAL 8-byte IEEE floating point numbers
TEXT Text strings
BLOB Binary large objects (for example JPEG, or MP3 files)

SQLite data types

In our example above, we specified VARCHAR as the data type for our columns. SQLite is 
perfectly happy with this, but it actually stores the values in these columns as just TEXT. It
ignores the length restrictions set in the data type specification. SQLite is extremely 

224  SQL



lenient about data types. In fact, it allows any kind of data to be stored in any specified 
data type, even allowing a mixture of data types in a single column. This is completely 
incompatible with all other databases, and relying on this would be very bad practice. In 
the remainder of this adventure we will be sticking to conventional data types and 
behavior.

Inserting Data
Moving on with our SQL stream, we see that the majority of the stream consists of 
INSERT statements. This is how rows are added to a table. Insert is sort of a misnomer as 
INSERT statements append rows to a table.

We surround the INSERT statements with BEGIN TRANSACTION and COMMIT. This is done 
for performance reasons. If we leave these out, the rows will still be appended to the table
but each INSERT will be treated as a separate transaction, vastly increasing the amount of 
time it takes to append a large number of rows. Treating a transaction this way also has 
another important benefit. SQL does not apply the transaction to the database until it 
receives the COMMIT statement, thus it is possible to write SQL code that will abandon a 
transaction if there is a problem and the change will be rolled back leaving the database 
unchanged.

Let’s go ahead and create our first table and add the package names and descriptions.
me@linuxbox:~/advemture-sql$ sqlite3 adv-sql.sqlite \
< insert_Package_Descriptions.sql

We execute the sqlite3 program specifying adv-sql.sqlite as the file used to store 
our tables. The choice of file name is arbitrary. We read our SQL stream into standard 
input and sqlite3 carries out the statements.

Doing Some Queries
Now that we have a database (albeit a small one), let’s take a look at it. To do this, we 
will start up sqlite3 and interact with it at the prompt.
me@linuxbox:~/advemture-sql$ sqlite3 adv-sql.sqlite
SQLite version 3.22.0 2018-01-22 18:45:57
Enter ".help" for usage hints.
sqlite> 

We’ll first use some SQLite dot commands to examine the structure of the database.
sqlite> .tables
Package_Descriptions
sqlite> .schema Package_Descriptions
CREATE TABLE Package_Descriptions (
    package_name VARCHAR(60),
    description  VARCHAR(120)
); 

SQL  225



The .tables dot command displays a list of tables in the database while the .schema dot
command lists the statements used to create the specified table.

Next, we’ll get into some real SQL using SELECT, probably the most frequently used SQL
statement.
sqlite> SELECT * FROM Package_Descriptions;
a2ps|GNU a2ps - 'Anything to PostScript' converter and pretty-printer
accountsservice|query and manipulate user account information
acl|Access control list utilities
acpi-support|scripts for handling many ACPI events
acpid|Advanced Configuration and Power Interface event daemon
adduser|add and remove users and groups
adium-theme-ubuntu|Adium message style for Ubuntu
adwaita-icon-theme|default icon theme of GNOME (small subset)
aisleriot|GNOME solitaire card game collection
alsa-base|ALSA driver configuration files
.
.
.

This is the simplest form of the SELECT statement. The syntax is the word SELECT 
followed by a list of columns or calculated values we want, and a FROM clause specifying 
the source of the data. This example uses * which means every column. Alternately, we 
could explicitly name the columns, like so:
sqlite> SELECT package_name, description FROM Package_Descriptions;

And achieve the same result.

Controlling the Output
As we can see from the output above, the default format is fine for further processing by 
tools such as awk, but it leaves a lot to be desired when it comes to being read by humans.
We can adjust the output format with some dot commands. We’ll also add the LIMIT 
clause to the end of our query to output just 10 rows.
sqlite> .headers on
sqlite> .mode column
sqlite> SELECT * FROM Package_Descriptions LIMIT 10;
package_name  description                                                     
------------  ----------------------------------------------------------------
a2ps          GNU a2ps - 'Anything to PostScript' converter and pretty-printer
accountsserv  query and manipulate user account information                   
acl           Access control list utilities                                   
acpi-support  scripts for handling many ACPI events                           
acpid         Advanced Configuration and Power Interface event daemon         
adduser       add and remove users and groups                                 
adium-theme-  Adium message style for Ubuntu                                  
adwaita-icon  default icon theme of GNOME (small subset)                      
aisleriot     GNOME solitaire card game collection                            
alsa-base     ALSA driver configuration files

By using the .headers on and .mode column dot commands, we add the column 
headings and change the output to column format. These settings stay in effect until we 
change them. The .mode dot command has a number of interesting possible settings.

226  SQL



Mode Description
csv Comma-separated values
column Left-aligned columns. Use .width n1 n2… to set column widths.
html HTML <table> code
insert SQL insert statements for TABLE
line One value per line
list Values delimited by .separator string. This is the default.
tabs Tab-separated values
tcl TCL (Tool Control Language) list elements

SQLite output modes

Here we will set the mode and column widths for our table.
sqlite> .mode column 
sqlite> .width 20 60 
sqlite> SELECT * FROM Package_Descriptions LIMIT 10;
package_name          description                                               
--------------------  --------------------------------------------------------
a2ps                  GNU a2ps - 'Anything to PostScript' converter and pretty
accountsservice       query and manipulate user account information             
acl                   Access control list utilities                             
acpi-support          scripts for handling many ACPI events                     
acpid                 Advanced Configuration and Power Interface event daemon   
adduser               add and remove users and groups                           
adium-theme-ubuntu    Adium message style for Ubuntu                            
adwaita-icon-theme    default icon theme of GNOME (small subset)                
aisleriot             GNOME solitaire card game collection                      
alsa-base             ALSA driver configuration files                           

In addition to listing columns, SELECT can be used to perform various output tasks. For 
example, we can perform calculations such as counting the number of rows in the 
Package_Descriptions table.
sqlite> SELECT COUNT(package_name) FROM Package_Descriptions;
count(package_name) 
--------------------
1972                

Being Selective
We can make SELECT output rows based on some selection criteria. Either an exact 
match:
sqlite> SELECT * FROM Package_Descriptions WHERE package_name = 'bash';
package_name          description                                               
--------------------  --------------------------------------------------------
bash                  GNU Bourne Again SHell                                  

A partial match using SQL wildcard characters:
sqlite> SELECT * FROM Package_Descriptions WHERE description LIKE '%bash%';
package_name          description
--------------------  --------------------------------------------------------
bash-completion       programmable completion for the bash shell
command-not-found     Suggest installation of packages in interactive bash ses

SQL  227



SQL supports two wildcard characters. The underscore (_), which matches any single 
character, and the percent sign (%), which matches zero or more instances of any 
character.

Notice too that strings are surrounded with single quotes. If a value is quoted this way, 
SQL treats it as a string. For example, the value '123' would be treated as a string rather 
than a number.

Sorting Output
Unless we tell SELECT to sort our data, it will be listed in the order it was inserted into the
table. Our data appears in alphabetical order by package name because it was inserted 
that way, not because of anything SQLite is doing. The ORDER BY clause can be added to 
determine which column is used for sorting. To demonstrate, let’s sort the output by the 
description,
sqlite> SELECT * FROM Package_Descriptions ORDER BY description LIMIT 10;
package_name          description
--------------------  -------------------------------------------------------
network-manager-conf
fonts-noto-cjk        "No Tofu" font families with large Unicode coverage (CJ
fonts-noto-mono       "No Tofu" monospaced font family with large Unicode cov
udev                  /dev/ and hotplug management daemon
procps                /proc file system utilities
alsa-base             ALSA driver configuration files
libasound2-plugins:a  ALSA library additional plugins
libhyphen0:amd64      ALTLinux hyphenation library - shared library
apcupsd               APC UPS Power Management (daemon)
apcupsd-doc           APC UPS Power Management (documentation/examples)

The default sorting order is ascending, but we can also sort in descending order by 
including DESC after the column name. Multiple columns can be named and ASC can be 
used to specify ascending order.
sqlite> SELECT * FROM Package_Descriptions ORDER BY description DESC LIMIT 10;
package_name  description                                       
------------  --------------------------------------------------
xsane-common  xsane architecture independent files              
libx264-152:  x264 video coding library                         
libevdev2:am  wrapper library for evdev devices                 
wireless-reg  wireless regulatory database                      
crda          wireless Central Regulatory Domain Agent          
libmutter-2-  window manager library from the Mutter window mana
libwayland-s  wayland compositor infrastructure - server library
libwayland-c  wayland compositor infrastructure - cursor library
libwayland-c  wayland compositor infrastructure - client library
libwayland-e  wayland compositor infrastructure - EGL library   

Adding Another Table
To demonstrate more of what we can do with SELECT, we’re going to need a bigger 
database. We have a second .tsv file that we can add. To save a step, we’ll filter the file 
into SQL and pipe it directly into sqlite3.

228  SQL



me@linuxbox:~/advemture-sql$ ./insert_package_files.awk \ 
                                < package_files-deb.tsv \
                                | sqlite3 adv-sql.sqlite

The second table is named Package_Files. Here is its schema:
sqlite> .schema Package_Files
CREATE TABLE Package_Files (
    package_name VARCHAR(60),
    file         VARCHAR(120),
    size_bytes   INTEGER
);

As we can see, this table has 3 columns; the package name, the name of a file installed by
the package, and the size of the installed file in bytes. Let’s do a SELECT to see how this 
table works.
sqlite> .headers on
sqlite> .mode column
sqlite> .width 15 50 -10
sqlite> SELECT * FROM Package_Files WHERE package_name = 'bash';
package_name     file                                                size_bytes
---------------  -------------------------------------------------  ----------
bash             /bin/bash                                             1113504
bash             /etc/bash.bashrc                                         2319
bash             /etc/skel/.bash_logout                                    220
bash             /etc/skel/.bashrc                                        3771
bash             /etc/skel/.profile                                        807
bash             /usr/bin/bashbug                                         7115
bash             /usr/bin/clear_console                                  10312
bash             /usr/share/doc/bash/COMPAT.gz                            7853
bash             /usr/share/doc/bash/INTRO.gz                             2921
bash             /usr/share/doc/bash/NEWS.gz                             27983
bash             /usr/share/doc/bash/POSIX.gz                             3702
bash             /usr/share/doc/bash/RBASH                                1693
bash             /usr/share/doc/bash/README                               3839
bash             /usr/share/doc/bash/README.Debian.gz                     1919
bash             /usr/share/doc/bash/README.abs-guide                     1105
bash             /usr/share/doc/bash/README.commands.gz                   3021
bash             /usr/share/doc/bash/changelog.Debian.gz                  1357
bash             /usr/share/doc/bash/copyright                           10231
bash             /usr/share/doc/bash/inputrc.arrows                        727
bash             /usr/share/lintian/overrides/bash                         156
bash             /usr/share/man/man1/bash.1.gz                           86656
bash             /usr/share/man/man1/bashbug.1.gz                          804
bash             /usr/share/man/man1/clear_console.1.gz                   1194
bash             /usr/share/man/man1/rbash.1.gz                            154
bash             /usr/share/man/man7/bash-builtins.7.gz                    508
bash             /usr/share/menu/bash                                      194
bash             /bin/rbash                                                  4

Notice the .width dot command above. A negative value causes the corresponding 
column to be right-aligned.

Subqueries
The SELECT statement can be used to produce many kinds of output. For example, it can 
be used to simply print literal strings.

SQL  229



sqlite> .mode column
sqlite> .header off
sqlite> SELECT 'String 1', 'String 2';
string 1    string 2

As we saw before, SELECT can produce calculated values.
sqlite> .header on
sqlite> SELECT 2 + 2;
2 + 2
--------------------
4
sqlite> SELECT COUNT(file), AVG(size_bytes) FROM Package_Files;
count(file)  avg(size_bytes)
-----------  ----------------
153506       33370.3488658424

To make complicated expressions more readable, we can assign their results to aliases by 
using the AS clause.
sqlite> SELECT COUNT(file) AS Files,
   ...> AVG(size_bytes) AS 'Average Size'
   ...> FROM Package_Files;
Files       Average Size    
----------  ----------------
153506      33370.3488658424

An important feature of SELECT is the ability to produce results by combining data from 
multiple tables. This process is done by performing joins and subqueries. We’ll talk about
joins a little later, but for now let’s concentrate on subqueries. SELECT allows us to 
include another SELECT statement as an item to output. To demonstrate this, we will 
produce a table that includes columns for package name, number of files in the package, 
and the total size of the package. The SELECT statement to do this is rather formidable. 
We’ll open our text editor and create a file named subquery_demo1.sql with the 
following content:
-- subquery_demo1.sql

-- Query to list top 20 packages with the greatest numbers of files

.mode column

.header on

.width 20 40 10 10
SELECT package_name, description,
       (SELECT COUNT(file)
          FROM Package_Files
         WHERE Package_Descriptions.package_name = Package_Files.package_name)
            AS files,
       (SELECT SUM(size_bytes)
          FROM Package_Files
         WHERE Package_Descriptions.package_name = Package_Files.package_name)
            AS size
  FROM Package_Descriptions ORDER BY files DESC LIMIT 20;

We’ll next run this query and view the results.
me@linuxbox:~/adventure-sql$ sqlite3 adv-sql.sqlite < subquery_demo1.sql
package_name          description                       files       size      
--------------------  --------------------------------  ----------  ----------

230  SQL



linux-headers-4.15.0  Header files related to Linux ke  14849       63991787  
linux-headers-4.15.0  Header files related to Linux ke  14849       64001943  
humanity-icon-theme   Humanity Icon theme               8014        14213715  
linux-headers-4.15.0  Linux kernel headers for version  7861        9015084   
linux-headers-4.15.0  Linux kernel headers for version  7860        9025673   
linux-modules-extra-  Linux kernel extra modules for v  4173        165921470 
linux-modules-extra-  Linux kernel extra modules for v  4172        165884678 
libreoffice-common    office productivity suite -- arc  3551        76686149  
gnome-accessibility-  High Contrast GTK+ 2 theme and i  3464        3713621   
ubuntu-mono           Ubuntu Mono Icon theme            3025        3755093   
ncurses-term          additional terminal type definit  2727        1987483   
manpages-dev          Manual pages about using GNU/Lin  2101        2192620   
linux-firmware        Firmware for Linux kernel driver  1938        331497257 
tzdata                time zone and daylight-saving ti  1834        1210058   
vim-runtime           Vi IMproved - Runtime files       1642        27941732  
codium                Code editing. Redefined.          1307        271907088 
zsh-common            architecture independent files f  1256        12261077  
perl-modules-5.26     Core Perl modules                 1144        18015966  
adwaita-icon-theme    default icon theme of GNOME (sma  1127        4848678   
gimp-data             Data files for GIMP               1032        45011675

The query takes some time to run (it has a lot to do) and from the results we see that it 
produces 4 columns: package name, description, number of files in the package, and total
size of the package. Let’s take this query apart and see how it works. At the uppermost 
level we see that the query follows the normal pattern of a SELECT statement.
SELECT list_of_items FROM Package_Descriptions
ORDER BY total_files DESC
LIMIT 20;

The basic structure is simple. What’s interesting is the list_of_items part. We know the
list of items is a comma-separated list of items to output, so if we follow the commas we 
can see the list:

1. package_name
2. description
3. (SELECT COUNT(file) FROM Package_Files WHERE 

Package_Descriptions.package_name = Package_Files.package_name) AS 
files

4. (SELECT SUM(size_bytes) FROM Package_Files WHERE 
Package_Descriptions.package_name = Package_Files.package_name) AS 
size

It’s also possible to use a subquery in a WHERE clause. Consider this query that we will 
name subquery_demo2.sql:
-- subquery_demo2.sql

-- Query to list all packages containing more than 1000 files

.mode column

.header on

.width 20 60
SELECT package_name, description
  FROM Package_Descriptions
 WHERE 1000 < (SELECT COUNT(file)
          FROM Package_Files

SQL  231



         WHERE Package_Descriptions.package_name = Package_Files.package_name)
 ORDER BY package_name;

When we execute this, we get the following results:
me@linuxbox:~/adventure-sql$ sqlite3 adv-sql.sqlite < subquery_demo2.sql
package_name          description                                               
--------------------  --------------------------------------------------------
adwaita-icon-theme    default icon theme of GNOME (small subset)              
codium                Code editing. Redefined.                                
gimp-data             Data files for GIMP                                     
gnome-accessibility-  High Contrast GTK+ 2 theme and icons                    
humanity-icon-theme   Humanity Icon theme                                     
inkscape              vector-based drawing program                            
libreoffice-common    office productivity suite -- arch-independent files     
linux-firmware        Firmware for Linux kernel drivers                       
linux-headers-4.15.0  Header files related to Linux kernel version 4.15.0     
linux-headers-4.15.0  Linux kernel headers for version 4.15.0 on 64 bit x86 SM
linux-headers-4.15.0  Header files related to Linux kernel version 4.15.0     
linux-headers-4.15.0  Linux kernel headers for version 4.15.0 on 64 bit x86 SM
linux-modules-4.15.0  Linux kernel extra modules for version 4.15.0 on 64 bit 
linux-modules-4.15.0  Linux kernel extra modules for version 4.15.0 on 64 bit 
linux-modules-extra-  Linux kernel extra modules for version 4.15.0 on 64 bit 
linux-modules-extra-  Linux kernel extra modules for version 4.15.0 on 64 bit 
manpages-dev          Manual pages about using GNU/Linux for development      
ncurses-term          additional terminal type definitions                     
perl-modules-5.26     Core Perl modules                                        
tzdata                time zone and daylight-saving time data                  
ubuntu-mono           Ubuntu Mono Icon theme                                   
vim-runtime           Vi IMproved - Runtime files                              
zsh-common            architecture independent files for Zsh

Updating Tables
The UPDATE statement is used to change values in one or more existing rows. We will 
demonstrate this by adding 100 to the size of each file in the sqlite3 package. First, let’s
look at the files in the package.
sqlite> .mode column
sqlite> .header on
sqlite> .width 50 -10
sqlite> SELECT file, size_bytes FROM Package_Files
   ...> WHERE package_name = 'sqlite3';
file                                                size_bytes
--------------------------------------------------  ----------
/usr/bin/sqldiff                                       1103280
/usr/bin/sqlite3                                       1260976
/usr/share/doc/sqlite3/copyright                          1261
/usr/share/man/man1/sqlite3.1.gz                          3596
/usr/share/doc/sqlite3/changelog.Debian.gz                  35

Next, we’ll update the table, adding 100 to the size of each file.
sqlite> UPDATE Package_Files SET size_bytes = size_bytes + 100
   ...> WHERE package_name = 'sqlite3';

When we examine the rows now, we see the change.
sqlite> SELECT file, size_bytes FROM Package_Files
   ...> WHERE package_name = 'sqlite3';

232  SQL



file                                                size_bytes
--------------------------------------------------  ----------
/usr/bin/sqldiff                                       1103380
/usr/bin/sqlite3                                       1261076
/usr/share/doc/sqlite3/copyright                          1361
/usr/share/man/man1/sqlite3.1.gz                          3696
/usr/share/doc/sqlite3/changelog.Debian.gz                 135

Finally, we’ll subtract 100 from each row to return the sizes to their original values.
sqlite> UPDATE Package_Files SET size_bytes = size_bytes - 100
   ...> WHERE package_name = 'sqlite3';

UPDATE can modify multiple values at once. To demonstrate this, we will create a new 
table called Package_Stats and use UPDATE to fill in the values. Since this one is a little 
complicated, we will put this in a file named create_Package_Stats.sql.
-- create_Package_Stats.sql

DROP TABLE IF EXISTS Package_Stats;
CREATE TABLE Package_Stats (
    package_name  VARCHAR(60),
    count         INTEGER,
    tot_size      INTEGER,
    min_size      INTEGER,
    max_size      INTEGER,
    avg_size      REAL
);

INSERT INTO Package_Stats (package_name)
     SELECT package_name
       FROM Package_Descriptions;

UPDATE Package_Stats
   SET count = (SELECT COUNT(file)
                  FROM Package_Files
                 WHERE Package_Files.package_name =
                       Package_Stats.package_name),
    tot_size = (SELECT SUM(size_bytes)
                  FROM Package_Files
                 WHERE Package_Files.package_name = 
                       Package_Stats.package_name),
    min_size = (SELECT MIN(size_bytes)
                  FROM Package_Files
                 WHERE Package_Files.package_name = 
                       Package_Stats.package_name),
    max_size = (SELECT MAX(size_bytes)
                  FROM Package_Files
                 WHERE Package_Files.package_name = 
                       Package_Stats.package_name),
    avg_size = (SELECT AVG(size_bytes)
                  FROM Package_Files
                 WHERE Package_Files.package_name = 
                       Package_Stats.package_name);

This file consists of four SQL statements. The first two are used to create the new table, 
as we have seen before. The third statement is an alternate form of the INSERT statement. 
This form is useful, as it copies a value from one table into another. This INSERT will 
create all the rows we need but only fill in the package_name column. To fill in the rest, 

SQL  233



we will use an UPDATE that fills in the remaining five values based on the results of some 
queries of the Package_Files table. Note that without a WHERE clause, UPDATE applies 
changes to every row.

Once the table is constructed, we can examine its contents.
sqlite> .width 25 -5 -10 -8 -8 -10
sqlite> SELECT * FROM Package_Stats LIMIT 10;
package_name               count    tot_size  min_size  max_size    avg_size
-------------------------  -----  ----------  --------  --------  ----------
a2ps                         299     3455890       117    388096  11558.1605
accountsservice               19      261704        42    182552  13773.8947
acl                           11       91106        30     35512  8282.36363
acpi-support                  18       13896        67      4922       772.0
acpid                         19       86126       115     52064  4532.94736
adduser                       81      246658         7     37322  3045.16049
adium-theme-ubuntu           137      126759        25     12502  925.248175
adwaita-icon-theme          1127     4848678        30     87850  4302.28748
aisleriot                    316     1890864        47    281544  5983.74683
alsa-base                     42      195295        24     34160  4649.88095

We’ll come back to this table a little later when we take a look at joins.

Deleting Rows
Deleting rows is pretty easy in SQL. There is a DELETE statement with a WHERE clause to 
specify a target. We’ll demonstrate that, but first there’s a nifty trick that SQLite supports.

We can change the output mode to write out INSERT statements. Let’s try it out.

sqlite> .mode insert Package_Files

If we use this .mode setting, we tell SQLite that we want INSERT statements directed at 
the specified table, in this case, Package_Files. Once we set this output mode, we can 
see the result.
sqlite> SELECT * FROM Package_Files WHERE package_name = 'sqlite3';
INSERT INTO Package_Files VALUES('sqlite3','/usr/bin/sqldiff',1103380);
INSERT INTO Package_Files VALUES('sqlite3','/usr/bin/sqlite3',1261076);
INSERT INTO Package_Files VALUES('sqlite3','/usr/share/doc/sqlite3/copyright',1
361);
INSERT INTO Package_Files VALUES('sqlite3','/usr/share/man/man1/sqlite3.1.gz',3
696);
INSERT INTO Package_Files VALUES('sqlite3','/usr/share/doc/sqlite3/changelog.De
bian.gz',135);

We’ll repeat this SELECT, but first we’ll change the output from standard output to a file 
named insert_sqlite3.sql.
sqlite> .output insert_sqlite3.sql
sqlite> select * from Package_Files where package_name = 'sqlite3';

This will write the stream of INSERT statements to the specified file. Next we’ll set the 
output back to standard output by issuing the .output dot command without an output 
file name.
sqlite> .output

234  SQL



Now let’s delete the rows in the Package_Files table.
sqlite> DELETE FROM Package_Files WHERE package_name = 'sqlite3';

We can confirm the deletion by running our query again and we see an empty result.
sqlite> .header on
sqlite> .mode column
sqlite> .width 12 50 -10
sqlite> SELECT * FROM Package_Files WHERE package_name = 'sqlite3';
sqlite>

Since we saved an SQL stream that can restore the deleted rows, we can now put them 
back in the table. The .read dot command can read the stream and execute it as though it
came from standard input.
sqlite> .read insert_sqlite3.sql

Now when we run our query, we see that the rows have been restored.
sqlite> SELECT * FROM Package_Files WHERE package_name = 'sqlite3';
package_name  file                                                size_bytes
------------  --------------------------------------------------  ----------
sqlite3       /usr/bin/sqldiff                                       1103280
sqlite3       /usr/bin/sqlite3                                       1260976
sqlite3       /usr/share/doc/sqlite3/copyright                          1261
sqlite3       /usr/share/man/man1/sqlite3.1.gz                          3596
sqlite3       /usr/share/doc/sqlite3/changelog.Debian.gz                  35

Adding and Deleting Columns
SQL provides the ALTER TABLE statement to modify table’s schema. To demonstrate this, 
we will add a couple of columns to the Package_Descriptions table and fill them with 
values calculated from the Package_Files table. We’ll place the necessary SQL in the 
add_column.sql file.
-- add_column.sql

-- Add and populate columns to Package_Descriptions

ALTER TABLE Package_Descriptions ADD COLUMN files INTEGER;
ALTER TABLE Package_Descriptions ADD COLUMN size INTEGER;

UPDATE Package_Descriptions
   SET files = (SELECT COUNT(file)
                  FROM Package_Files
                 WHERE Package_Files.package_name =
                       Package_Descriptions.package_name),
        size = (SELECT SUM(size_bytes)
                  FROM Package_Files
                 WHERE Package_Files.package_name =
                       Package_Descriptions.package_name);

We’ll execute the statements and examine resulting schema.
sqlite> .read add_column.sql
sqlite> .schema
CREATE TABLE Package_Descriptions (
    package_name VARCHAR(60),

SQL  235



    description  VARCHAR(120),
    files        INTEGER,
    size         INTEGER);

sqlite> SELECT * FROM Package_Descriptions WHERE package_name = 'sqlite3';
package_name  description                          files       size      
------------  -----------------------------------  ----------  ----------
sqlite3       Command line interface for SQLite 3  5           2369648 

SQL provides another ALTER TABLE statement for deleting columns from a table. It has 
the following form:
ALTER TABLE table_name DROP COLUMN column_name;

Unfortunately, SQLite does not support this so we have to do it the hard way. This is 
accomplished in four steps:

1. Create a new temporary table with the desired schema.
2. Copy the columns we want to keep into the temporary table.
3. Drop the original table.
4. Rename the temporary table.
Here is a file called drop_column.sql that does the job.
-- drop_column.sql

-- Remove extra columns from Package_Descriptions

BEGIN TRANSACTION;

-- Create new table with temporary name

DROP TABLE IF EXISTS temp;
CREATE TABLE temp (
    package_name VARCHAR(60),
    description  VARCHAR(120));

-- Copy columns we want into new table

INSERT INTO temp
    (package_name, description)
    SELECT package_name, description
      FROM Package_Descriptions;

-- Get rid of old table and rename the new replacement table

DROP TABLE Package_Descriptions;

ALTER TABLE temp RENAME TO Package_Descriptions;

COMMIT;

We again use the alternate form of the INSERT statement for copying values from one 
table to another. We copy the package_name and description columns from the 
Package_Descriptions table to the correspondingly named columns in the temp table.

236  SQL



Joins
A join is a method by which we perform a query and produce a result that combines the 
data from two tables. SQLite supports several types of joins but we’re going to focus on 
the most commonly used type called an inner join. We can think of an inner join as the 
intersection of two tables. In the example below, a file called join_demo.sql, we will 
produce a query result that matches our earlier example when we added columns to the 
Package_Descriptions table.
-- join_demo.sql

-- Demonstrate join by selecting columns from 2 tables

.header on

.mode column

.width 20 35 -5 -10

SELECT Package_Descriptions.package_name AS Package,
       description AS Description,
       count AS Files,
       tot_size AS Size
  FROM Package_Descriptions
  INNER JOIN Package_Stats
          ON Package_Descriptions.package_name =
             Package_Stats.package_name
LIMIT 10;

The results of this query are as follows:
Package               Description                          Files        Size
--------------------  -----------------------------------  -----  ----------
a2ps                  GNU a2ps - 'Anything to PostScript'    299     3455890
accountsservice       query and manipulate user account i     19      261704
acl                   Access control list utilities           11       91106
acpi-support          scripts for handling many ACPI even     18       13896
acpid                 Advanced Configuration and Power In     19       86126
adduser               add and remove users and groups         81      246658
adium-theme-ubuntu    Adium message style for Ubuntu         137      126759
adwaita-icon-theme    default icon theme of GNOME (small    1127     4848678
aisleriot             GNOME solitaire card game collectio    316     1890864
alsa-base             ALSA driver configuration files         42      195295

If we break down this query, we see that it starts out as we expect, then it is followed by 
the INNER JOIN statement. The INNER keyword is optional as an inner join is the default. 
After the INNER JOIN we have to specify the relationship on which the join is based. In 
this example, we are looking for matching instances of the package_name in both tables. 
Any expression my be used to convey the table relationship, provided that the result of 
the expression is true or false.

Since package_name is a column in both the Package_Descriptions and 
Package_Stats tables, we must precede it with the name of the respective table to avoid 
ambiguity.

SQL  237



Views
The join example above is a pretty useful query for our tables, but due to its complexity 
it’s best executed from a file rather than as an ad hoc query. SQL addresses this issue by 
providing a feature called views that allows a complex query to be stored in the database 
and used to produce a virtual table that can be used with simple query commands. In the 
following example we will create a view using our INNER JOIN query above to create a 
virtual table called Stats that we can use as the target of subsequent queries.
-- view_demo.sql

DROP VIEW IF EXISTS Stats;
CREATE VIEW Stats
AS
    SELECT Package_Descriptions.package_name AS Package,
           description AS Description,
           count AS Files,
           tot_size AS Size
      FROM Package_Descriptions
      INNER JOIN Package_Stats
              ON Package_Descriptions.package_name =
                 Package_Stats.package_name
        ORDER BY Package;

Once our view is created, we can treat Stats as just another table in our database even 
though it does not really exist as such.
sqlite> .header on
sqlite> .mode column
sqlite> .width 20 35 -5 -10
sqlite> SELECT * FROM Stats LIMIT 10;
Package               Description                          Files        Size    
--------------------  -----------------------------------  -----  ----------
a2ps                  GNU a2ps - 'Anything to PostScript'    299     3455890   
accountsservice       query and manipulate user account i     19      261704    
acl                   Access control list utilities           11       91106    
acpi-support          scripts for handling many ACPI even     18       13896    
acpid                 Advanced Configuration and Power In     19       86126    
adduser               add and remove users and groups         81      246658    
adium-theme-ubuntu    Adium message style for Ubuntu         137      126759    
adwaita-icon-theme    default icon theme of GNOME (small    1127     4848678   
aisleriot             GNOME solitaire card game collectio    316     1890864   
alsa-base             ALSA driver configuration files         42      195295

To delete a view we use the DROP VIEW statement as follows:
sqlite> DROP VIEW Stats;

Indexes
It’s been said that the three most important features of a database system are 
“performance, performance, and performance.” While this in not exactly true (things like 
data integrity and reliability are important, too), complex operations on large databases 
can get really slow, so it’s important to make things as fast as we can. One feature we can
take advantage of are indexes.

238  SQL



An index is a data structure the database maintains that speeds up database searches. It’s a
sorted list of rows in a table ordered by elements in one or more columns. Without an 
index, a table is sorted according to values in a hidden column called rowid. The values 
in this column are integers that start with 1 and increment each time a row is added to the 
table. Here we see a query that selects the 100th row from the Package_Stats table.

sqlite> .header on
sqlite> .mode column
sqlite> .width 20 -5 -8 -8 -8 -8
sqlite> SELECT * FROM Package_Stats WHERE rowid = 100;
package_name          count  tot_size  min_size  max_size  avg_size
--------------------  -----  --------  --------  --------  --------
cups-server-common      595   1996400         0    370070  3355.294

Our database server can locate this row in the table very quickly because it already knows
where to find the 100th row. However, if we want to search for the row that contains 
package name cups-server-common, SQLite must examine every row in the table to 
locate the matching row. To facilitate performance tuning, SQLite provides a way to see 
what search strategy is used during a query.
sqlite> .width -8 -5 -4 55 
sqlite> EXPLAIN QUERY PLAN
   ...> SELECT * FROM Package_Stats WHERE package_name = 'cups-server-common';
selectid  order  from  detail
--------  -----  ----  ------------------------------------------------------- 
       0      0     0  SCAN TABLE Package_Stats

We can see from the SCAN TABLE Package_Stats the SQLite performs a sequential 
search of the table during this query.

To create an index to allow faster searches of package_name we can do the following:

sqlite> CREATE INDEX idx_package_name
   ...> ON Package_Stats (package_name);

After doing this, we’ll look at the query plan and see the difference.
sqlite> EXPLAIN QUERY PLAN
   ...> SELECT * FROM Package_Stats WHERE package_name = 'cups-server-common';
   selectid  order  from  detail                                                
   --------  -----  ----  
-------------------------------------------------------
          0      0     0  SEARCH TABLE Package_Stats USING INDEX 
idx_package_name

Hereafter, when we search the table for a package name, SQLite will use the index to 
directly get to the row rather than looking at every row searching for a match. So why 
don’t we just index everything? The reason we don’t is that indexes impose overhead 
every time a row is inserted, deleted, or updated since the indexes must be kept up to 
date. Indexes are best used on tables that are read more often than written to.

We probably won’t see much of a performance improvement when searching the 
Package_Stats table because it’s just not that big, but on a large table the improvement 
can be substantial.

SQL  239



We can see the index when we examine the table’s schema.
sqlite> .schema Package_Stats
CREATE TABLE Package_Stats (
    package_name  VARCHAR(60),
    count         INTEGER,
    tot_size      INTEGER,
    min_size      INTEGER,
    max_size      INTEGER,
    avg_size      REAL
);
CREATE INDEX idx_package_name
ON Package_Stats (package_name);

SQLite also has a dot command.
sqlite> .indexes
idx_package_name

Another benefit of using an index is that it’s kept in sorted order (that’s how it performs 
searches quickly). The side effect is that when an index is used during a query the results 
of the query will be sorted as well. To demonstrate, we’ll create another index for the 
Package_Stats table, this time using the tot_size column. Notice that when we 
perform a select based on that column, the results are in ascending order.
sqlite> CREATE INDEX idx_tot_size
   ...> ON Package_Stats (tot_size);
sqlite> .width 20 -5 -10 -8 -8 -8
sqlite> SELECT * FROM Package_Stats
   ...> WHERE tot_size > 100000000;
   package_name          count    tot_size  min_size  max_size avg_size
   --------------------  -----  ----------  --------  -------- --------
   inkscape               1025   127507308         0  19599216 124397.3
   libreoffice-core        119   135106135        26  66158968 1135345.
   linux-modules-extra-   4172   165884678      1292   4216105 39761.42
   linux-modules-extra-   4173   165921470      1292   4216105 39760.71
   thunderbird              69   180861838        27  12163098 2621186.
   firefox                  74   203393773        23  12408360 2748564.
   google-chrome-stable    100   235727530        25  16288078 2357275.
   libgl1-mesa-dri:amd6     20   237774005        36  19548840 11888700
   codium                 1307   271907088        17  11551467 208039.0
   linux-firmware         1938   331497257         6  19922416 171051.2

To delete our indexes, we use the DROP INDEX statement.
sqlite> DROP INDEX idx_package_name;
sqlite> DROP INDEX idx_tot_size;

Triggers and Stored Procedures
As we saw earlier during our discussion of views, SQL allow us to store SQL code in the 
database. Besides views, SQL provides for two other ways of storing code. These two 
methods are stored procedures and triggers. Stored procedures, as the name implies, 
allows a block of SQL statements to be stored and treated as a subroutine available to 
other SQL programs, or for use during ad hoc interactions with the database. Creating a 
stored procedure is done with this syntax:

240  SQL



CREATE PROCEDURE procudure_name
AS
    [block of SQL code];

Parameters can be passed to stored procedures. Here is an example:
CREATE PROCEDURE list_pkg_files @package VARCHAR(60)
AS
    SELECT package_name, file
      FROM Package_Files
     WHERE package_name = @package; 

To call this procedure, we would do this:
EXEC list_package_files @package = 'bash';

Unfortunately, SQLite does not support stored procedures. It does, however, support the 
second method of code storage, triggers.

Triggers are stored blocks of code that are automatically called when some event occurs 
and a specified condition is met. Triggers are typically used to perform certain 
maintenance tasks to keep the database in good working order.

Triggers can be set to activate before, after, or instead of the execution of INSERT, 
DELETE, or UPDATE statements. In the example below, we will have a trigger activate 
before a DELETE is performed on the Package_Files table.

/*
    trigger_demo.sql

    Trigger demo where we create a "trash can" for the
    Package_Files table and set a trigger to copy rows
    to the PF_Backup table just before they are deleted
    from Package_Files.
*/

-- Create backup table with the same schema as Package_Files

CREATE TABLE IF NOT EXISTS PF_Backup (
    package_name VARCHAR(60),
    file         VARCHAR(120),
    size_bytes   INTEGER
);

-- Define trigger to copy rows into PF_Backup as they are
-- deleted from Package_Files

CREATE TRIGGER backup_row_before_delete
BEFORE DELETE ON Package_Files
BEGIN
    INSERT INTO PF_Backup
    VALUES (OLD.package_name, OLD.file, OLD.size_bytes);
END;

The first thing we do is create a table to hold our deleted rows. We use a slightly different
form of the CREATE TABLE statement to create the table only if it does not already exist. 

SQL  241



This will ensure that an existing table of saved rows will persist, even if we reload the 
trigger.

After creating the table, we create a trigger called backup_row_before_delete to copy 
data from the Package_Files table to the PF_Backup table just before any row in 
Package_Files is deleted.

In order to reference data that might be used by the trigger, SQL provides the NEW 
reference for new data that is inserted or updated, and the OLD reference for previous data 
that is updated or deleted. In our example, we use the OLD reference to refer to the data 
about to be deleted.

Performing Backups
Since SQLite uses an ordinary file to store each database (as opposed to the exotic 
methods used by some other systems), we can use regular command line tools such as cp 
to perform database backups. There is an interesting SQL method we can use, too. The
.dump dot command will produce a stream of SQL statements that will fully reproduce 
the database including tables, views, triggers, etc. To output the database this way, we 
need only do the following:
sqlite> .dump

The stream will appear on standard output or we can use the .output dot command to 
direct the stream to the file of our choice.

One interesting application of this technique would be to combine tables from multiple 
databases into one. For example, let’s imagine we had several Raspberry Pi computers 
each performing data logging of an external sensor. We could collect dumps from each 
machine and combine all of the tables into a single database for data analysis and 
reporting.

Generating Your Own Datasets
Below are the programs used to create the datasets used in this adventure. They are 
included in the archive for those who want to create their own datasets.

For Deb-based Systems (Debian, Ubuntu, Mint, Raspberry Pi OS)
The first program named mk_package_descriptions-deb, extracts package information
and outputs a .tsv file.
#!/bin/bash

# mk_package_descriptions-deb - Output tsv list of installed debian/ubnutu
#                               packages on standard output

phase1() { # Replace repeated spaces with a tab

242  SQL



  awk '
  {
    gsub(/[ ][ ]+/, "\t")
    print $0
  }'
  return
}

phase2() { # Output field 2 and 5 separated by a tab
  awk '
    BEGIN {
      FS = "\t"
    }

    $1 == "ii" {
      print $2 "\t" $5
    }'
  return
}

dpkg-query -l | phase1 | phase2

The second program, mk_package_files-deb outputs all the files included in each 
package.
#!/bin/bash

# mk_package_files - make list of files in all packages
# Reads *.list files in LIST_DIR. Outputs stream of tsv to stdout.

LIST_DIR=/var/lib/dpkg/info

mk_list () {

  local list_file="$1"
  local lf_length="${#list_file}"
  local len
  local package
  local -a files

  ((len = lf_length - 5))
  package="${list_file:0:$len}" # strip '.list' extension
  package="${package##*/}" # strip leading pathname
  mapfile files < "$list_file" # load list into array
  for i in "${files[@]}"; do
    i="${i//[$'\t\r\n']}" # strip trailing newlines
    if [[ -f "$i" ]] ; then # write tsv file
      printf "%s\t%s\t%s\n" \
        "$package" \
        "$i" \
        "$(stat --printf '%s' "$i")" # size of file
    fi
  done
  return
}

for i in "$LIST_DIR"/*.list; do
  mk_list "$i"
done

SQL  243



For RPM-based Systems (RHEL, CentOS, Fedora)
The mk_package_descriptions-rpm script:
#!/bin/bash

# mk_package_descriptions-rpm - Output tsv list of installed Fedora/CentOS
#                               packages on standard output

while read package; do
  description=$(dnf info "$package" \
    | awk '$1 == "Summary" { gsub(/Summary      : /, ""); print $0; exit }')
  printf "%s\t%s\n" \
    "$package" \
    "$description"
done < <( dnf list installed | awk 'NF == 3 { print $1 }' )

The mk_package_files-rpm script:
#!/bin/bash

# mk_package_files-rpm - Output tsv list of installed Fedora/CentOS files
#                        on standard output

while read package; do
  while read package_file; do
    if [[ -r "$package_file" ]]; then # not all files are present/readable
      printf "%s\t%s\t%s\n" \
        "$package" \
        "$package_file" \
        "$(stat --printf '%s' "$package_file")"
    fi
  done < <( rpm -ql "$package" )
done < <( dnf list installed | awk 'NF == 3 { print $1 }' )

Converting .tsv to SQL
Below are two AWK programs used to convert the .tsv files into SQL. First, the 
insert_package_descriptions.awk program:
#!/usr/bin/awk -f

# insert_package_descriptions.awk - Insert records from
#                                   package_descriptions.tsv

BEGIN {
    FS="\t"
    print "DROP TABLE IF EXISTS Package_Descriptions;"
    print "CREATE TABLE Package_Descriptions ("
    print "    package_name VARCHAR(60),"
    print "    description  VARCHAR(120)"
    print ");"
    print "BEGIN TRANSACTION;" # vastly improves performance
}

{
    gsub(/'/, "''") # double up single quotes to escape them
    print "INSERT INTO Package_Descriptions"
    print "     VALUES ( '" $1 "', '" $2 "');"
}

244  SQL



END {
    print "COMMIT;"
}

Second, the insert_package_files.awk program:
#!/usr/bin/awk -f

# insert_package_files.awk - Insert records from
#                            package_files.tsv

BEGIN {
    FS="\t"
    print "DROP TABLE IF EXISTS Package_Files;"
    print "CREATE TABLE Package_Files ("
    print "    package_name VARCHAR(60),"
    print "    file         VARCHAR(120),"
    print "    size_bytes   INTEGER"
    print ");"
    print "BEGIN TRANSACTION;" # vastly improves performance
}

{
    gsub(/'/, "''") # double up single quotes to escape them
    print "INSERT INTO Package_Files"
    print "     VALUES ('" $1 "', '" $2 "','" $3 "');"
}

END {
    print "COMMIT;"
}

Summing Up
SQL is an important and widely used technology. It’s kinda fun too. While we looked at 
the general features and characteristics of SQL, there is much more to learn. For example,
there are the more advanced concepts such as normalization, referential integrity, and 
relational algebra. Though we didn’t get to the really heady stuff, we did cover enough to
get some real work done whenever we need to integrate data storage into our scripts and 
projects.

Further Reading
• SQL Style Guide by Simon Holywell The style guide that influenced the formatting 

of the SQL presented in this adventure. https://www.sqlstyle.guide/

• SQL Tutorial A good general tutorial on SQL. Covers most of the major SQL 
dialects (though not SQLite). https://www.w3schools.com/sql/

• SQLite project home page Includes detailed documentation. 
https://www.sqlite.org/index.html

SQL  245

https://www.sqlite.org/index.html
https://www.w3schools.com/sql/
https://www.sqlstyle.guide/


• SQLite Tutorial An excellent detailed tutorial and reference for the SQLite dialect 
of SQL. Definitely worth checking out if you plan to use SQLite seriously. 
https://www.sqlitetutorial.net/

• MySQL home page A very popular multi-user database system used by many 
websites. https://mysql.com/

• MariaDB Foundation home page MariaDB is a fork of the open source version of 
MySQL. The project came about out of concern over Oracle’s purchase of the 
company behind MySQL. https://mariadb.org/

• PostgreSQL project home page Another very popular open source multi-user 
database. https://www.postgresql.org/

• Various Wikipedia articles providing background for the topics covered in this 
adventure:

◦ SQL https://en.wikipedia.org/wiki/SQL
◦ Relational Database https://en.wikipedia.org/wiki/Relational_database
◦ Relational Model https://en.wikipedia.org/wiki/Relational_model
◦ LAMP Software Stack 

https://en.wikipedia.org/wiki/LAMP_(software_bundle)
◦ MySQL https://en.wikipedia.org/wiki/MySQL
◦ MariaDB https://en.wikipedia.org/wiki/MariaDB
◦ PostgreSQL https://en.wikipedia.org/wiki/PostgreSQL

• Stanford University offers an online course called “Introduction to Databases” 
taught by Professor Jennifer Widom. I took this course; it’s quite good. The course 
videos are available in this YouTube playlist: https://www.youtube.com/playlist?
list=PLroEs25KGvwzmvIxYHRhoGTz9w8LeXek0

• Finally, the phrase “gird your grid for a big one” is taken from the 1971 comedy 
album I Think We’re All Bozos on This Bus by the Firesign Theater. Besides being 
very funny to retro-futurism fans like myself, the album is notable because it 
contains one of the first pop culture references to computer hacking. You can read 
more about it at Wikipedia: https://en.wikipedia.org/wiki/I_Think_We
%27re_All_Bozos_on_This_Bus

246  SQL

https://en.wikipedia.org/wiki/I_Think_We're_All_Bozos_on_This_Bus
https://en.wikipedia.org/wiki/I_Think_We're_All_Bozos_on_This_Bus
https://www.youtube.com/playlist?list=PLroEs25KGvwzmvIxYHRhoGTz9w8LeXek0
https://www.youtube.com/playlist?list=PLroEs25KGvwzmvIxYHRhoGTz9w8LeXek0
https://en.wikipedia.org/wiki/PostgreSQL
https://en.wikipedia.org/wiki/MariaDB
https://en.wikipedia.org/wiki/MySQL
https://en.wikipedia.org/wiki/LAMP_(software_bundle)
https://en.wikipedia.org/wiki/Relational_model
https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/SQL
https://www.postgresql.org/
https://mariadb.org/
https://mysql.com/
https://www.sqlitetutorial.net/


Index
A
Alfred Aho.........................................................91
aliases.........................................................49, 230
Almquist shell..................................................145
ALTER TABLE statement...............................235
Android............................................................135
ANSI standards for SQL..................................223
Apache.............................................................219
appending to files.............................................105
arctangent.........................................................108
arithmetic operators...........................................99
arrays..................................................................99
AS clause.........................................................230
associative arrays.......................................99, 143
AT&T Bell Telephone Laboratories..........91, 143
atan2 function...................................................108
attributes...........................................................219
autocomplete..........................................................

in vim.....................................................163
autoindent.........................................................166
AWK one-liners...............................................113

B
background color...............................................68
banner command................................................72
bash builtins.....................................................202
batch processing...............................................196
BEGIN...............................................................93
Bill Joy.............................................................143
blinking text.......................................................67
bold text..............................................................67
Bourne shell.....................................................143
brace delimiting variables................................203
break statement................................................103
Brian Fox.........................................................144
Brian Kernighan.................................................91
buffers..............................................................160
busybox............................................................137

C
C programming language..........................91, 100
C shell..............................................................143
calendar..............................................................77
camelCase........................................................200
capnames............................................................64
case conversion......................................................

in Midnight Commander..........................15

in vim.............................................167, 172
checklist.............................................................77
Chet Ramey......................................................144
chsh command.................................................152
clear screen.........................................................70
client/server architecture..................................221
coding standards...............................................195
color schemes.........................................................

in gnome-terminal..................................124
in terminal emulators..............................117
in vim.....................................................162

columnar data.....................................................91
comma separated values...................................111
command history..............................................143

in Midnight Commander............................5
in readline................................................51
in vim.....................................................158

command line options......................................213
command mode................................................155
command prefix.....................................................

in byobu...................................................43
in GNU screen..........................................30
in tmux.....................................................37

command substitution................................84, 202
commenting out code.......................................170
comments...........................................94, 197, 202
compound commands......................................201
configuration files............................................187
Connectbot.......................................................135
constant names.................................................200
constants...........................................................198
continue statement...........................................103
copying files...........................................................

in Midnight Commander..........................12
copying text......................................................176

in byobu...................................................45
in gnome-terminal..................................122
in GNU screen..........................................32
in readline................................................52
in tmux.....................................................39
in vim.............................164, 167, 173, 175

cos function......................................................108
cosine...............................................................108
countdown timer................................................78
CREATE TABLE statement............................224
creating directories.................................................

247



in Midnight Commander..........................10
CSV files..........................................................111
cursor movement....................................................

in readline................................................51
in tput.......................................................66
in vim.............................................163, 167

D
dash shell..................................................145, 193
David Korn.......................................................143
DEC VT102.....................................................120
DEC VT220.....................................................119
delete arrays.......................................................99
DELETE statement..........................................234
deleting files...........................................................

in Midnight Commander..........................17
deleting text............................................................

in readline................................................52
Dennis Richie...................................................143
detaching sessions..................................................

in byobu.............................................43, 46
in GNU screen..........................................34
in tmux.....................................................40

dialog boxes.......................................................77
calendar....................................................77
checklist...................................................77
directory selection....................................77
edit box....................................................77
file selector.........................................77, 80
form.........................................................77
gauge........................................................77
info box....................................................77
input box..................................................77
menu box............................................77, 88
message box.......................................78, 88
password box...........................................78
pause........................................................78
program box.............................................78
progress box.............................................78
radio list box............................................79
range box.................................................78
tail box.....................................................78
text box....................................................78
time box...................................................78
tree view...................................................78
yes/no box.............................................78 f.

directory selection..............................................77
display system health.......................................191
do loop..............................................................103
DOS format files..............................................172

dot commands..................................................222
DROP TABLE statement.................................224

E
E. F. Cobb.........................................................219
echo..................................................................204
edit box...............................................................77
editing files.............................................................

in dialog...................................................77
in Midnight Commander............................8

egrep...................................................................95
END...................................................................93
error message function.....................................188
ESC key..................................................................

in Midnight Commander............................3
exec command.............................................58, 83
exit statement...................................................103
exit status.........................................................199
exp function.....................................................109

F
field separator.................................................96 f.
fields...................................................................92
file descriptor duplication..................................58
file descriptors....................................................57
file modes...........................................................16
file record number..............................................99
file selector...................................................77, 80
FILENAME.......................................................99
filetype plugin..........................................158, 180
filtering text......................................................179
filters..................................................................91
finding files............................................................

in Midnight Commander..........................19
in vim.....................................................181

Firesign Theater...............................................246
FISH protocol.........................................................

in Midnight Commander..........................19
flow control statements....................................100
FNR....................................................................99
focus follows mouse........................................134
for loop.............................................................102
foreground color.................................................68
form....................................................................77
FS....................................................................96 f.
FTP.........................................................................

in Midnight Commander..........................19
function names.................................................200
function statement............................................110
FVWM.............................................................120

248



G
gauge..................................................................77
gawk...................................................................91
getline...............................................................106
global alias.......................................................150
GNOME...........................................................115
gnome-terminal........................................117, 121
GNU GPLv3....................................................144
gpm.......................................................................3
gsub..................................................................107
guake................................................................131

H
Hacker’s Keyboard..........................................135
help file............................................................157
help message............................................206, 213
hostname command.........................................190

I
I Think We’re All Bozos on This Bus..............246
if/then/else construct........................................101
indentation.......................................164, 167, 200
index function..................................................107
indexes.............................................................238
info box..............................................................77
infocmp command.............................................63
inner join..........................................................237
input box............................................................77
input files.........................................................105
insert mode.......................................................155
INSERT statement...................................223, 233
inserting boilerplate text..................................176
install a package...............................................191
int function.......................................................109
integer arithmetic.............................................203
invisible text.......................................................67

J
job control........................................................143
joins..................................................................230

K
KDE..................................................................115
Ken Thompson.................................................143
keyboard shortcuts...........................................175

in gnome-terminal..................................122
keys..................................................................220
konsole.....................................................117, 128
Korn shell.........................................................143
ksh88................................................................146
ksh93........................................................143, 146

L
LAMP stack.....................................................221
leader character................................................177
length function.................................................107
LIMIT clause....................................................226
line continuation characters.............................199
line length.........................................................199

in vim.....................................................169
line wrap...........................................................183
load function library.........................................189
local variables..................................................110
log function......................................................109
logical operators...........................................95, 99
long form option names...................................200
long option names............................................205
LXDE...............................................................115

M
macOS......................................................144, 197
macros..............................................................172
MariaDB...........................................................221
Mashey shell....................................................143
match function.................................................107
mawk..................................................................91
mcedit...................................................................8
menu box......................................................77, 88
message box..............................................77 f., 88
Midnight Commander........................................80

current panel..............................................3
hotlist.........................................................4
information mode.......................................4
Meta-key....................................................3
other panel.................................................3

mktemp command............................................208
multi-dimensional arrays...................................99
MySQL....................................................219, 221

N
natural logarithm..............................................109
nawk...................................................................91
ncurses................................................................63
netrw plugin.....................................................180
next statement..................................................103
NF.......................................................................98
noclobber option................................................61
normal mode....................................................155
NR......................................................................98
number of fields.................................................98

O
OFS....................................................................98

249



Oh-My-Zsh......................................................151
ORDER BY clause...........................................228
ORS....................................................................98
OS X.................................................................146
output field separator.........................................98
output record separator......................................98

P
parameter expansion........................................202
passed by reference..........................................110
passed by value................................................110
password box.....................................................78
pasting text.............................................................

in byobu...................................................45
in GNU screen..........................................32
in tmux.....................................................40

PATH variable..........................................193, 196
pathname expansion.........................................149
pattern negation..................................................96
pattern/action pairs.............................................92
pause...................................................................78
pdksh................................................................146
Peter Weinberger................................................91
piped command..................................................78
pipelines...................................................105, 200
positional parameters.........................50, 193, 199
POSIX..............................................144, 196, 203
PostgreSQL......................................................221
print..................................................................104
printf.........................................................104, 204
program box.......................................................78
progress box.......................................................78
progress indicator...............................................77

Q
queries..............................................................225

R
radio list box......................................................79
radio list box......................................................78
rand function....................................................109
random numbers...............................................109
range box............................................................78
range pattern.......................................................96
Raspberry Pi.........................................................v
rc files...............................................................192
RDBMS............................................................219
readline...............................................................50
record.................................................................92
record number....................................................98
record separator............................................96, 99

region.....................................................................
in GNU screen..........................................30
in tmux.....................................................37

registers............................................................173
regular expressions....................................95, 103
relational database management systems........219
relational expressions.........................................95
renaming files.........................................................

in Midnight Commander..........................13
REPLYTO variable..........................................214
report generators................................................91
return statement................................................199
reverse incremental history search..................151
reverse video......................................................68
revision history.................................................197
root shell...........................................................190
ROT13 encoding..............................................167
RS.................................................................96, 99
rxvt...................................................................120

S
scalar variables.................................................110
schema..............................................................220
script maintenance...........................................187
script templates................................................211
scrollback mode.....................................................

in GNU screen..........................................32
in tmux.....................................................39

Secure Shell for Chrome..................................139
sed......................................................................91
seed random number generator........................109
SELECT statement...........................................226
session....................................................................

in GNU screen..........................................30
in tmux.....................................................36
terminal multiplexer.................................30

set -e.................................................................205
set -o PIPEFAIL...............................................205
set -u.................................................................205
setting time.........................................................78
shebang..............................................94, 188, 197
shell builtins.....................................................202
shell functions....................................................49
shellcheck.........................................................208
SIGHUP...........................................................207
SIGINT.............................................................207
SIGTERM........................................................207
sin function.......................................................109
sine...................................................................109
single dimension arrays.....................................99
SMB/CIFS..............................................................

250



in Midnight Commander..........................19
sorting database output....................................228
spell checking...................................................183
split function....................................................108
sprintf function.................................................108
SQL..................................................................219
SQLite..............................................................221
SQLite output modes.......................................227
sqrt function.....................................................109
square root........................................................109
srand function...................................................109
stderr...................................................................57
stdin....................................................................57
stdout..................................................................57
Steve Bourne....................................................143
stored procedures.............................................240
string concatenation...........................................97
Structured Query Language.............................219
sub function......................................................108
subqueries.....................................................229 f.
subshell.............................................................147
subshells...........................................................178

in Midnight Commander..........................22
in vim.....................................................159

substr function..................................................108
suffix alias........................................................151
symbolic links....................................................15
syntax highlighting..........................................160

T
tab characters...................................................165
tab completion..................................................148
tab separated value...........................................112
tables................................................................219
tabs.........................................................................

in terminal emulators..............................116
in vim.....................................................160

tail box................................................................78
tcsh...................................................................145
Tektronix 4014 graphics terminal....................119
teletype machines.............................................165
template generator............................................211
temporary file.....................................................81
temporary files.................................................207
TERM variable..........................................63, 120
terminal capability names..................................64
terminal multiplexer...........................................29
terminal profiles...............................................122
terminal type......................................................63
terminal width..................................................116
terminator.........................................................132

terminfo......................................................63, 119
Termux.............................................................137
test if host is available......................................189
test if program is installed................................189
testing array membership.................................102
text box...............................................................78
text completion.......................................................

in readline................................................53
in vim.....................................................174

text editing operators.......................................167
text file viewer...................................................78
text object selection.........................................168
Thompson shell................................................143
time box..............................................................78
TODO comments.............................................202
tput.....................................................................63
traps..................................................................207
tree view.............................................................78
triggers.............................................................240
TRS-80.................................................................v
truncating files.................................................105
TSV files..........................................................112
tuples................................................................219
typewriters........................................................165

U
underlined text...................................................67
Unicode............................................................120
update a system................................................192
UPDATE statement..........................................232
urxvt.................................................................120
usage message..................................................216
using the mouse......................................................

in Midnight Commander............................5
in vim.....................................................185

V
variable names.................................................200
variables.............................................................97
vendor lock-in..................................................224
version number.................................................198
view terminal full screen..................................122
viewing files...........................................................

in dialog...................................................78
in Midnight Commander............................7

views................................................................238
visual block selection.......................................170
visual mode......................................................164

W
WHERE clause................................................227

251



while loop.........................................................103
window...................................................................

create............................................................
in byobu..............................................43
in GNU screen....................................30
in tmux................................................37

in GNU screen..........................................30
split..............................................................

in byobu..............................................43
in GNU screen....................................33
in konsole..................................128, 130
in terminator......................................132
in tmux................................................37
in vim................................156, 176, 180

terminal multiplexer.................................30
word splitting...................................................202
wrap lines.........................................................183
writing to files..................................................105

X
XFCE................................................................115
xterm..........................................................63, 117

Y
yes/no box.......................................................78 f.

Z
Z shell...............................................................144

zsh............................................................144, 148

.

.bashrc........50, 139, 152, 155, 187, 190, 192, 214

.tar files...............................................................18

/
/bin/sh...............................................................145
/dev/tty...............................................................60
/etc/X11/Xresources.........................................118
/tmp..................................................................208
/usr/local/bin....................................................196
/usr/local/etc.....................................................197
/usr/local/lib.....................................................197
/usr/local/sbin...................................................197
/usr/share/dict/words........................................183

~
~/.kshrc.............................................................152
~/.profile...........................................................152
~/.tchrc.............................................................152
~/.vim/ftplugin.................................................159
~/.vim/ftplugin/sh.vim.............................159, 185
~/.vim/ftplugin/text.vim...................................185
~/.vimrc....................................................155, 185
~/.Xresources...................................................118
~/.zshrc.............................................................152

252



Adventures with the Linux Command Line was written in Markdown using Vim on a 
Raspberry Pi 2B running Raspbian. It was converted into HTML and Open Document 
format using Pandoc. The PDF version was created with LibreOffice Writer on a System 
76 Ratel workstation running Ubuntu 20.04. The text is set in Liberation Serif and 
Liberation Sans.

253


	What this book is about
	Who should read this book
	What’s in the first Internet edition
	How to read this book
	Acknowledgments
	1 Midnight Commander
	Features
	Availability
	Invocation
	Screen Layout
	Using the Keyboard and Mouse
	Navigation and Browsing
	Changing the Listing Format
	Setting the Directory on the Other Panel
	The Directory Hotlist
	Directory History
	Using the Mouse

	Viewing and Editing Files
	Editing

	Tagging Files
	Tagging Individual Files
	Tagging Groups of Files

	We Need a Playground
	Creating Directories
	Copying and Moving Files
	Creating Links
	Setting File Modes and Ownership
	Deleting Files

	Power Features
	Virtual File Systems
	Finding Files
	Panelizing
	Subshells

	The User Menu
	Editing the User Menu
	Menu File Format
	Macros
	Conditionals

	Summing Up
	Further Reading

	2 Terminal Multiplexers
	Some Historical Context
	GNU Screen
	Availability
	Invocation
	Multiple Windows
	Copy and Paste
	Multiple Regions
	Detaching Sessions
	Customizing Screen

	tmux
	Availability
	Invocation
	Multiple Windows
	Multiple Panes
	Copy Mode
	Detaching Sessions
	Customizing tmux

	byobu
	Availability
	Invocation
	Usage
	Copy Mode
	Detaching Sessions
	Customizing byobu

	Summing Up
	Further Reading
	GNU Screen
	tmux
	byobu


	3 Less Typing
	Aliases and Shell Functions
	Command Line Editing
	Control Commands
	Moving Around
	Using Command History
	Changing Text
	Cutting and Pasting
	Editing in Action

	Completion
	Programmable Completion
	Summing Up
	Further Reading

	4 More Redirection
	What’s Really Going On
	Duplicating File Descriptors
	exec
	/dev/tty
	Noclobber
	Summing Up
	Further Reading

	5 tput
	Availability
	What it Does/How it Works
	Reading Terminal Attributes
	Controlling the Cursor
	Text Effects
	Text Color

	Clearing the Screen
	Making Time
	Summing Up
	Further Reading

	6 dialog
	Features
	Availability
	How it Works
	Method 1: Store the Results in a Temporary File
	Method 2: Use Command Substitution and Redirection

	Before and After
	Limitations
	Summing Up
	Further Reading

	7 AWK
	History
	Availability
	So, What’s it Good For?
	How it Works
	Special Patterns

	Invocation
	The Language
	Program Format
	Patterns
	BEGIN and END
	relational-expression
	/regular-expression/
	pattern logical-operator pattern
	! pattern
	pattern, pattern

	Fields and Records
	Variables and Data Types
	Built-in Variables
	FS - Field separator
	NF - Number of fields
	NR - Record number
	OFS - Output field separator
	ORS - Output record separator
	RS - Record separator
	FILENAME
	FNR - File record number

	Arrays
	Arithmetic and Logical Expressions
	Flow Control
	if ( expression ) statement
	for ( expression ; expression ; expression ) statement
	for ( var in array ) statement
	while ( expression ) statement
	break continue next
	exit expression

	Regular Expressions
	Output Functions
	print expr1, expr2, expr3,…
	printf(format, expr1, expr2, expr3,…)

	Writing to Files and Pipelines
	Reading Data
	getline
	getline var
	getline <file
	getline var <file
	command | getline
	command | getline var

	String Functions
	gsub(r, s, t)
	index(s1, s2)
	length(s)
	match(s, r)
	split(s, a, fs)
	sprintf(fmt, exprs)
	sub(r, s, t)
	substr(s, p, l)

	Arithmetic Functions
	atan2(y, x)
	cos(x)
	exp(x)
	int(x)
	log(x)
	rand()
	sin(x)
	sqrt(x)
	srand(x)

	User Defined Functions
	Defining a function
	Passing Parameters to Functions
	Local Variables
	Convert a File Into CSV Format
	Convert a File Into TSV Format
	Print the Total for Each Row
	Print the Total for Each Column
	Print the Minimum and Maximum Value in Column 1

	One Last Example

	Summing Up
	Further Reading

	8 Power Terminals
	A Typical Modern Terminal
	Size
	Tabs
	Profiles
	Fonts, Colors, and Backgrounds

	Past Favorites
	xterm
	rxvt

	Modern Power Terminals
	gnome-terminal
	Tabs
	Keyboard Shortcuts
	Profiles
	Opening Hyperlinks and Email Addresses
	Resetting the Terminal

	konsole
	Bookmarks
	Split View

	guake
	terminator

	Terminals for Other Platforms
	Android
	Connectbot
	Termux

	Chrome/Chrome OS

	Summing Up
	Further Reading
	xterm:
	Tektronix 4014:
	rxvt:
	urxvt (rxvt-Unicode):
	gnome-terminal:
	konsole:
	guake:
	terminator:
	Connectbot:
	Hacker’s Keyboard:
	Termux:
	Secure Shell


	9 Other Shells
	The Evolution of Shells
	Modern Implementations
	A Reference Script
	dash - Debian Almquist Shell
	tcsh - TENEX C Shell
	ksh - Korn Shell
	zsh - Z Shell
	Tab Completion
	Pathname Expansion
	Global Aliases
	Suffix Aliases
	Improved History Search
	Environment Variable Editing
	Frameworks


	Changing to Another Shell
	Summing Up
	Further Reading

	10 Vim, with Vigor
	Let’s Get Started
	Getting Help
	Starting a Script
	Setting the Filetype

	Using the Shell
	Buffers
	Tabs
	Color Schemes
	Marks and File Marks
	Visual Mode
	Indentation
	Indentation Settings For Scripts

	Power Moves
	Operators
	Text Object Selection

	Text Formatting
	Formatting Paragraphs
	Comment Blocks
	Case Conversion
	File Format Conversion

	Macros
	Registers
	Insert Sub-Modes
	Automatically Complete Word Ctrl-n
	Insert Register Contents - Ctrl-r
	Automatically Complete Line - Ctrl-x Ctrl-l
	Automatically Complete Filename Ctrl-x Ctrl-f
	Dictionary Lookup - Ctrl-x Ctrl-k

	Mapping
	Snippets
	Finishing Our Script
	Using External Commands
	Loading Output From a Command Into the Buffer
	Running an External Command on the Current File
	Using an External Command to Filter the Current Buffer

	File System Management and Navigation
	netrw
	:find
	wildmenu
	Opening Files Named in a Document

	One Does Not Live by Code Alone
	Spell Checking

	More .vimrc Tricks
	Summing Up
	Further Reading
	Videos


	11 source
	Configuration Files
	Function Libraries
	General Purpose Libraries

	Let’s Not Forget .bashrc
	Ever Wonder Why it’s Called .bashrc?

	Security Considerations and Other Subtleties
	Summing Up
	Further Reading

	12 Coding Standards Part 1: Our Own
	What the Shell is Good At
	What the Shell is Not So Good At
	A Coding Standard of Our Own
	Script Naming, Location, and Permissions
	Structure
	The Shebang
	The Comment Block
	Constants
	Functions
	Program Body

	Formatting and Visual Style
	Line Length
	Indentation
	Constant, Variable and Function Names
	Long Command Option Names
	Pipelines
	Compound Commands

	Coding Practices
	Commenting
	Shell Builtins vs. External Programs
	Variable Expansion and Quoting
	Pathname Expansion and Wildcards
	[[ … ]] vs. [ … ]
	Use (( … )) for Integer Arithmetic
	printf vs. echo
	Error Handling
	Command Line Options and Arguments
	Assist the User
	Traps
	Temporary Files
	ShellCheck is Your Friend


	Summing Up
	Further Reading

	13 Coding Standards Part 2: new_script
	Installing new_script
	Options and Arguments
	Creating Our First Template
	Looking at the Template
	Testing the Template

	Summing Up
	Further Reading

	14 SQL
	A Little Theory: Tables, Schemas, and Keys
	Tables
	Schemas
	Keys

	Database Engines/Servers
	sqlite3
	Building a Playground
	Starting sqlite3

	Creating a Table and Inserting Our Data
	Creating and Deleting Tables
	Data Types
	Inserting Data
	Doing Some Queries
	Controlling the Output
	Being Selective

	Sorting Output
	Adding Another Table

	Subqueries
	Updating Tables
	Deleting Rows
	Adding and Deleting Columns
	Joins
	Views
	Indexes
	Triggers and Stored Procedures
	Performing Backups
	Generating Your Own Datasets
	For Deb-based Systems (Debian, Ubuntu, Mint, Raspberry Pi OS)
	For RPM-based Systems (RHEL, CentOS, Fedora)
	Converting .tsv to SQL

	Summing Up
	Further Reading


